ArturG9 commited on
Commit
a049857
·
verified ·
1 Parent(s): 8907506

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -8
app.py CHANGED
@@ -52,7 +52,7 @@ def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='m
52
  # Load documents from the specified data path
53
  loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
54
  docs = loader.load()
55
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
56
  split_docs = text_splitter.split_documents(docs)
57
 
58
 
@@ -94,7 +94,7 @@ def main():
94
 
95
  st.markdown("Hi, I am Qwen, chat mmodel, based on respublic of Lithuania law document. Write you question and press enter to start chat.")
96
 
97
- retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=9, chunk_size=300, chunk_overlap=20)
98
  if user_question := st.text_input("Ask a question about your documents:"):
99
  handle_userinput(user_question,retriever)
100
 
@@ -153,12 +153,7 @@ def create_conversational_rag_chain(retriever):
153
  verbose=False,
154
  )
155
 
156
- template = """Answer the question based only on the following context:
157
- {context}
158
-
159
- Question: {question}
160
- """
161
- prompt = ChatPromptTemplate.from_template(template)
162
 
163
  rag_chain = prompt | llm | StrOutputParser()
164
 
 
52
  # Load documents from the specified data path
53
  loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
54
  docs = loader.load()
55
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap,separators=["\n \n \n", "\n \n", "\n1" , "(?<=\. )", " ", ""])
56
  split_docs = text_splitter.split_documents(docs)
57
 
58
 
 
94
 
95
  st.markdown("Hi, I am Qwen, chat mmodel, based on respublic of Lithuania law document. Write you question and press enter to start chat.")
96
 
97
+ retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=9, chunk_size=450, chunk_overlap=20)
98
  if user_question := st.text_input("Ask a question about your documents:"):
99
  handle_userinput(user_question,retriever)
100
 
 
153
  verbose=False,
154
  )
155
 
156
+ prompt = hub.pull("rlm/rag-prompt")
 
 
 
 
 
157
 
158
  rag_chain = prompt | llm | StrOutputParser()
159