Update app.py
Browse files
app.py
CHANGED
@@ -45,20 +45,20 @@ def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='m
|
|
45 |
|
46 |
|
47 |
# Check if vectorstore exists
|
48 |
-
if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
|
49 |
# Load the existing vectorstore
|
50 |
-
|
51 |
-
else:
|
52 |
# Load documents from the specified data path
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
|
59 |
|
60 |
# Create the vectorstore
|
61 |
-
|
62 |
documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path
|
63 |
)
|
64 |
|
@@ -94,7 +94,7 @@ def main():
|
|
94 |
|
95 |
st.markdown("Hi, I am Qwen, chat mmodel, based on respublic of Lithuania law document. Write you question and press enter to start chat.")
|
96 |
|
97 |
-
retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=
|
98 |
if user_question := st.text_input("Ask a question about your documents:"):
|
99 |
handle_userinput(user_question,retriever)
|
100 |
|
|
|
45 |
|
46 |
|
47 |
# Check if vectorstore exists
|
48 |
+
#if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
|
49 |
# Load the existing vectorstore
|
50 |
+
# vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings)
|
51 |
+
#else:
|
52 |
# Load documents from the specified data path
|
53 |
+
loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
|
54 |
+
docs = loader.load()
|
55 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
56 |
+
split_docs = text_splitter.split_documents(docs)
|
57 |
|
58 |
|
59 |
|
60 |
# Create the vectorstore
|
61 |
+
vectorstore = Chroma.from_documents(
|
62 |
documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path
|
63 |
)
|
64 |
|
|
|
94 |
|
95 |
st.markdown("Hi, I am Qwen, chat mmodel, based on respublic of Lithuania law document. Write you question and press enter to start chat.")
|
96 |
|
97 |
+
retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=9, chunk_size=300, chunk_overlap=20)
|
98 |
if user_question := st.text_input("Ask a question about your documents:"):
|
99 |
handle_userinput(user_question,retriever)
|
100 |
|