ArturG9 commited on
Commit
8907506
·
verified ·
1 Parent(s): 2d2827c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -45,20 +45,20 @@ def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='m
45
 
46
 
47
  # Check if vectorstore exists
48
- if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
49
  # Load the existing vectorstore
50
- vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings)
51
- else:
52
  # Load documents from the specified data path
53
- loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
54
- docs = loader.load()
55
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
56
- split_docs = text_splitter.split_documents(docs)
57
 
58
 
59
 
60
  # Create the vectorstore
61
- vectorstore = Chroma.from_documents(
62
  documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path
63
  )
64
 
@@ -94,7 +94,7 @@ def main():
94
 
95
  st.markdown("Hi, I am Qwen, chat mmodel, based on respublic of Lithuania law document. Write you question and press enter to start chat.")
96
 
97
- retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=12, chunk_size=300, chunk_overlap=20)
98
  if user_question := st.text_input("Ask a question about your documents:"):
99
  handle_userinput(user_question,retriever)
100
 
 
45
 
46
 
47
  # Check if vectorstore exists
48
+ #if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
49
  # Load the existing vectorstore
50
+ # vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings)
51
+ #else:
52
  # Load documents from the specified data path
53
+ loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
54
+ docs = loader.load()
55
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
56
+ split_docs = text_splitter.split_documents(docs)
57
 
58
 
59
 
60
  # Create the vectorstore
61
+ vectorstore = Chroma.from_documents(
62
  documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path
63
  )
64
 
 
94
 
95
  st.markdown("Hi, I am Qwen, chat mmodel, based on respublic of Lithuania law document. Write you question and press enter to start chat.")
96
 
97
+ retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=9, chunk_size=300, chunk_overlap=20)
98
  if user_question := st.text_input("Ask a question about your documents:"):
99
  handle_userinput(user_question,retriever)
100