Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,49 +9,49 @@ model = torch.jit.load(model_path, map_location=torch.device('cpu'))
|
|
9 |
model.eval()
|
10 |
|
11 |
def predict(image):
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
# تعریف رابط Gradio
|
48 |
iface = gr.Interface(
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
)
|
55 |
|
56 |
if __name__ == "__main__":
|
57 |
-
|
|
|
9 |
model.eval()
|
10 |
|
11 |
def predict(image):
|
12 |
+
try:
|
13 |
+
print("Predict function called")
|
14 |
|
15 |
+
# تغییر اندازه تصویر به 224x224
|
16 |
+
image = image.resize((224, 224)) # تغییر اندازه به 224x224
|
17 |
|
18 |
+
# پیشپردازش تصویر
|
19 |
+
image = image.convert("RGB")
|
20 |
+
input_tensor = np.array(image)
|
21 |
+
input_tensor = input_tensor.transpose(2, 0, 1) # تبدیل از HWC به CHW
|
22 |
+
input_tensor = input_tensor[np.newaxis, :] # افزودن بعد batch
|
23 |
+
input_tensor = input_tensor / 255.0 # نرمالسازی
|
24 |
+
input_tensor = torch.from_numpy(input_tensor).float()
|
25 |
|
26 |
+
print(f"Input tensor shape: {input_tensor.shape}")
|
27 |
|
28 |
+
# اجرای مدل
|
29 |
+
with torch.no_grad():
|
30 |
+
output = model(input_tensor)
|
31 |
|
32 |
+
print(f"Output tensor shape: {output.shape}")
|
33 |
|
34 |
+
# پسپردازش خروجی
|
35 |
+
output_image = output.squeeze().cpu().numpy()
|
36 |
+
output_image = output_image.transpose(1, 2, 0) # تبدیل از CHW به HWC
|
37 |
+
output_image = (output_image * 255).astype(np.uint8)
|
38 |
+
output_image = Image.fromarray(output_image)
|
39 |
|
40 |
+
print("Output image generated successfully")
|
41 |
+
return output_image
|
42 |
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error during prediction: {str(e)}")
|
45 |
+
return None
|
46 |
|
47 |
# تعریف رابط Gradio
|
48 |
iface = gr.Interface(
|
49 |
+
fn=predict,
|
50 |
+
inputs=gr.Image(type="pil", label="Input Image"),
|
51 |
+
outputs=gr.Image(type="pil", label="Output Image"),
|
52 |
+
title="Sapiens Model Inference",
|
53 |
+
description="Upload an image to process with the Sapiens model."
|
54 |
)
|
55 |
|
56 |
if __name__ == "__main__":
|
57 |
+
iface.launch()
|