Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,57 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
input_tensor = input_tensor.reshape((num_patches, patch_size, patch_size, 3))
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
input_tensor = torch.from_numpy(input_tensor)
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
|
| 6 |
+
# بارگذاری مدل
|
| 7 |
+
model_path = "sapiens_0.3b_render_people_epoch_100_torchscript.pt2"
|
| 8 |
+
model = torch.jit.load(model_path, map_location=torch.device('cpu'))
|
| 9 |
+
model.eval()
|
| 10 |
|
| 11 |
+
def predict(image):
|
| 12 |
+
try:
|
| 13 |
+
print("Predict function called")
|
|
|
|
| 14 |
|
| 15 |
+
# تغییر اندازه تصویر به 224x224
|
| 16 |
+
image = image.resize((224, 224)) # تغییر اندازه به 224x224
|
| 17 |
|
| 18 |
+
# پیشپردازش تصویر
|
| 19 |
+
image = image.convert("RGB")
|
| 20 |
+
input_tensor = np.array(image)
|
| 21 |
+
input_tensor = input_tensor.transpose(2, 0, 1) # تبدیل از HWC به CHW
|
| 22 |
+
input_tensor = input_tensor[np.newaxis, :] # افزودن بعد batch
|
| 23 |
+
input_tensor = input_tensor / 255.0 # نرمالسازی
|
| 24 |
+
input_tensor = torch.from_numpy(input_tensor).float()
|
| 25 |
|
| 26 |
+
print(f"Input tensor shape: {input_tensor.shape}")
|
|
|
|
| 27 |
|
| 28 |
+
# اجرای مدل
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
output = model(input_tensor)
|
| 31 |
+
|
| 32 |
+
print(f"Output tensor shape: {output.shape}")
|
| 33 |
+
|
| 34 |
+
# پسپردازش خروجی
|
| 35 |
+
output_image = output.squeeze().cpu().numpy()
|
| 36 |
+
output_image = output_image.transpose(1, 2, 0) # تبدیل از CHW به HWC
|
| 37 |
+
output_image = (output_image * 255).astype(np.uint8)
|
| 38 |
+
output_image = Image.fromarray(output_image)
|
| 39 |
+
|
| 40 |
+
print("Output image generated successfully")
|
| 41 |
+
return output_image
|
| 42 |
+
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"Error during prediction: {str(e)}")
|
| 45 |
+
return None
|
| 46 |
+
|
| 47 |
+
# تعریف رابط Gradio
|
| 48 |
+
iface = gr.Interface(
|
| 49 |
+
fn=predict,
|
| 50 |
+
inputs=gr.Image(type="pil", label="Input Image"),
|
| 51 |
+
outputs=gr.Image(type="pil", label="Output Image"),
|
| 52 |
+
title="Sapiens Model Inference",
|
| 53 |
+
description="Upload an image to process with the Sapiens model."
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
if __name__ == "__main__":
|
| 57 |
+
iface.launch(share=True)
|