Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,22 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
# Load the model
|
7 |
-
model_path = "sapiens_0.3b_render_people_epoch_100_torchscript.pt2"
|
8 |
-
model = torch.jit.load(model_path, map_location=torch.device('cpu'))
|
9 |
-
model.eval()
|
10 |
-
|
11 |
-
# Define a function to preprocess images to match the expected input shape
|
12 |
-
|
13 |
def preprocess_image(image):
|
14 |
-
# Resize the image to a fixed size (e.g.,
|
15 |
image = image.resize((1024, 768))
|
16 |
|
17 |
-
# Convert to RGB
|
18 |
input_tensor = np.array(image.convert("RGB")) / 255.0
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
input_tensor = torch.from_numpy(input_tensor)
|
25 |
-
|
26 |
-
return input_tensor
|
27 |
-
|
28 |
-
def predict(image):
|
29 |
-
try:
|
30 |
-
print("Predict function called")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
# Run the model
|
38 |
-
with torch.no_grad():
|
39 |
-
output = model(input_tensor)
|
40 |
-
|
41 |
-
print(f"Output tensor shape: {output.shape}")
|
42 |
-
|
43 |
-
# Post-process the output (if necessary)
|
44 |
-
# ...
|
45 |
-
|
46 |
-
return output # Return the output tensor directly
|
47 |
-
|
48 |
-
except Exception as e:
|
49 |
-
print(f"Error during prediction: {str(e)}")
|
50 |
-
return None
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
fn=predict,
|
55 |
-
inputs=gr.Image(type="pil", label="Input Image"),
|
56 |
-
outputs=gr.Image(type="pil", label="Output Image"),
|
57 |
-
title="Sapiens Model Inference",
|
58 |
-
description="Upload an image to process with the Sapiens model."
|
59 |
-
)
|
60 |
|
61 |
-
|
62 |
-
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def preprocess_image(image):
|
2 |
+
# Resize the image to a fixed size (e.g., 1024x768)
|
3 |
image = image.resize((1024, 768))
|
4 |
|
5 |
+
# Convert to RGB and normalize pixel values
|
6 |
input_tensor = np.array(image.convert("RGB")) / 255.0
|
7 |
|
8 |
+
# Divide the image into patches (adjust patch size as needed)
|
9 |
+
patch_size = 16 # Assuming a patch size of 16 based on model information
|
10 |
+
num_patches = (1024 // patch_size) * (768 // patch_size)
|
11 |
+
input_tensor = input_tensor.reshape((num_patches, patch_size, patch_size, 3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Flatten the patches
|
14 |
+
input_tensor = input_tensor.reshape(-1, patch_size * patch_size * 3)
|
15 |
|
16 |
+
# Add batch dimension
|
17 |
+
input_tensor = input_tensor[np.newaxis, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Convert to PyTorch tensor
|
20 |
+
input_tensor = torch.from_numpy(input_tensor)
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
return input_tensor
|
|