hyw-en-demo / translation.py
AriNubar's picture
Didnt work, reverting
068f983 verified
raw
history blame
6.21 kB
import os
import re
import sys
import typing as tp
import torch
import pysbd
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM
import unicodedata
#hy_segmenter = pysbd.Segmenter(language="hy", clean=False) not needed
MODEL_NAME = "AriNubar/nllb-200-distilled-600m-en-hyw"
LANGUAGES = {
"Արեւմտահայերէն | Western Armenian": "hyw_Armn",
"Անգլերէն | English": "eng_Latn",
}
HF_TOKEN = os.environ.get("HF_TOKEN")
def get_non_printing_char_replacer(replace_by: str = " "):
non_printable_map = {
ord(c): replace_by
for c in (chr(i) for i in range(sys.maxunicode + 1))
# same as \p{C} in perl
# see https://www.unicode.org/reports/tr44/#General_Category_Values
if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}
}
def replace_non_printing_char(line) -> str:
return line.translate(non_printable_map)
return replace_non_printing_char
def clean_text(text: str, lang) -> str:
HYW_CHARS_TO_NORMALIZE = {
"«": '"',
"»": '"',
"“": '"',
"”": '"',
"’": "'",
"‘": "'",
"–": "-",
"—": "-",
"ՙ": "'",
"՚": "'",
}
DOUBLE_CHARS_TO_NORMALIZE = {
"Կ՛": "Կ'",
"կ՛": "կ'",
"Չ՛": "Չ'",
"չ՛": "չ'",
"Մ՛": "Մ'",
"մ՛": "մ'",
}
replace_nonprint = get_non_printing_char_replacer()
text = replace_nonprint(text)
# print(text)
text = text.replace("\t", " ").replace("\n", " ").replace("\r", " ").replace(r"[^\x00-\x7F]+", " ").replace(r"\s+", " ")
text = text.strip()
if lang == "hyw_Armn":
text = text.translate(str.maketrans(HYW_CHARS_TO_NORMALIZE))
for k, v in DOUBLE_CHARS_TO_NORMALIZE.items():
text = text.replace(k, v)
return text
def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False):
if fix_double_space:
text = re.sub(r"\s+", " ", text)
text = text.strip()
sentences = splitter.segment(text)
fillers = []
i = 0
for sent in sentences:
start_idx = text.find(sent, i)
if ignore_errors and start_idx == -1:
start_idx = i + 1
assert start_idx != -1, f"Sent not found after index {i} in text: {text}"
fillers.append(text[i:start_idx])
i = start_idx + len(sent)
fillers.append(text[i:])
return sentences, fillers
def init_tokenizer(tokenizer, new_lang='hyw_Armn'):
""" Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id[new_lang] = old_len-1
tokenizer.id_to_lang_code[old_len-1] = new_lang
# always move "mask" to the last position
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
if new_lang not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append(new_lang)
# clear the added token encoder; otherwise a new token may end up there by mistake
tokenizer.added_tokens_encoder = {}
tokenizer.added_tokens_decoder = {}
class Translator:
def __init__(self) -> None:
self.model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, token=HF_TOKEN)
if torch.cuda.is_available():
self.model = self.model.cuda()
self.tokenizer = NllbTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
init_tokenizer(self.tokenizer)
self.hyw_splitter = pysbd.Segmenter(language="hy", clean=False)
self.eng_splitter = pysbd.Segmenter(language="en", clean=False)
self.languages = LANGUAGES
def translate_single(
self,
text,
src_lang,
tgt_lang,
max_length="auto",
num_beams=4,
n_out=None,
**kwargs,
):
self.tokenizer.src_lang = src_lang
encoded = self.tokenizer(
text, return_tensors="pt", truncation=True, max_length=256
)
if max_length == "auto":
max_length = int(32 + 2.0 * encoded.input_ids.shape[1])
generated_tokens = self.model.generate(
**encoded.to(self.model.device),
forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang],
max_length=max_length,
num_beams=num_beams,
num_return_sequences=n_out or 1,
**kwargs,
)
out = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
if isinstance(text, str) and n_out is None:
return out[0]
return out
def translate(self, text: str,
src_lang: str,
tgt_lang: str,
max_length="auto",
num_beams=4,
by_sentence=True,
clean=True,
**kwargs):
if by_sentence:
if src_lang =="eng_Latn":
sents, fillers = sentenize_with_fillers(text, self.eng_splitter, ignore_errors=True)
elif src_lang == "hyw_Armn":
sents, fillers = sentenize_with_fillers(text, self.hyw_splitter, ignore_errors=True)
else:
sents = [text]
fillers = ["", ""]
if clean:
sents = [clean_text(sent, src_lang) for sent in sents]
results = []
for sent, sep in zip(sents, fillers):
results.append(sep)
results.append(self.translate_single(sent, src_lang, tgt_lang, max_length, num_beams, **kwargs))
results.append(fillers[-1])
return " ".join(results)
if __name__ == "__main__":
print("Initializing translator...")
translator = Translator()
print("Translator initialized.")
print(translator.translate("Hello, world!", "eng_Latn", "hyw_Armn"))