Spaces:
Running
Running
File size: 6,207 Bytes
f2eda42 5ba9dc3 d76cd6f 5ba9dc3 f2eda42 5ba9dc3 f2eda42 5ba9dc3 f2eda42 5ba9dc3 068f983 5ba9dc3 068f983 5ba9dc3 068f983 5ba9dc3 068f983 5ba9dc3 068f983 5ba9dc3 068f983 5ba9dc3 068f983 5ba9dc3 068f983 5ba9dc3 068f983 5ba9dc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
import re
import sys
import typing as tp
import torch
import pysbd
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM
import unicodedata
#hy_segmenter = pysbd.Segmenter(language="hy", clean=False) not needed
MODEL_NAME = "AriNubar/nllb-200-distilled-600m-en-hyw"
LANGUAGES = {
"Արեւմտահայերէն | Western Armenian": "hyw_Armn",
"Անգլերէն | English": "eng_Latn",
}
HF_TOKEN = os.environ.get("HF_TOKEN")
def get_non_printing_char_replacer(replace_by: str = " "):
non_printable_map = {
ord(c): replace_by
for c in (chr(i) for i in range(sys.maxunicode + 1))
# same as \p{C} in perl
# see https://www.unicode.org/reports/tr44/#General_Category_Values
if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}
}
def replace_non_printing_char(line) -> str:
return line.translate(non_printable_map)
return replace_non_printing_char
def clean_text(text: str, lang) -> str:
HYW_CHARS_TO_NORMALIZE = {
"«": '"',
"»": '"',
"“": '"',
"”": '"',
"’": "'",
"‘": "'",
"–": "-",
"—": "-",
"ՙ": "'",
"՚": "'",
}
DOUBLE_CHARS_TO_NORMALIZE = {
"Կ՛": "Կ'",
"կ՛": "կ'",
"Չ՛": "Չ'",
"չ՛": "չ'",
"Մ՛": "Մ'",
"մ՛": "մ'",
}
replace_nonprint = get_non_printing_char_replacer()
text = replace_nonprint(text)
# print(text)
text = text.replace("\t", " ").replace("\n", " ").replace("\r", " ").replace(r"[^\x00-\x7F]+", " ").replace(r"\s+", " ")
text = text.strip()
if lang == "hyw_Armn":
text = text.translate(str.maketrans(HYW_CHARS_TO_NORMALIZE))
for k, v in DOUBLE_CHARS_TO_NORMALIZE.items():
text = text.replace(k, v)
return text
def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False):
if fix_double_space:
text = re.sub(r"\s+", " ", text)
text = text.strip()
sentences = splitter.segment(text)
fillers = []
i = 0
for sent in sentences:
start_idx = text.find(sent, i)
if ignore_errors and start_idx == -1:
start_idx = i + 1
assert start_idx != -1, f"Sent not found after index {i} in text: {text}"
fillers.append(text[i:start_idx])
i = start_idx + len(sent)
fillers.append(text[i:])
return sentences, fillers
def init_tokenizer(tokenizer, new_lang='hyw_Armn'):
""" Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id[new_lang] = old_len-1
tokenizer.id_to_lang_code[old_len-1] = new_lang
# always move "mask" to the last position
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
if new_lang not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append(new_lang)
# clear the added token encoder; otherwise a new token may end up there by mistake
tokenizer.added_tokens_encoder = {}
tokenizer.added_tokens_decoder = {}
class Translator:
def __init__(self) -> None:
self.model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, token=HF_TOKEN)
if torch.cuda.is_available():
self.model = self.model.cuda()
self.tokenizer = NllbTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
init_tokenizer(self.tokenizer)
self.hyw_splitter = pysbd.Segmenter(language="hy", clean=False)
self.eng_splitter = pysbd.Segmenter(language="en", clean=False)
self.languages = LANGUAGES
def translate_single(
self,
text,
src_lang,
tgt_lang,
max_length="auto",
num_beams=4,
n_out=None,
**kwargs,
):
self.tokenizer.src_lang = src_lang
encoded = self.tokenizer(
text, return_tensors="pt", truncation=True, max_length=256
)
if max_length == "auto":
max_length = int(32 + 2.0 * encoded.input_ids.shape[1])
generated_tokens = self.model.generate(
**encoded.to(self.model.device),
forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang],
max_length=max_length,
num_beams=num_beams,
num_return_sequences=n_out or 1,
**kwargs,
)
out = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
if isinstance(text, str) and n_out is None:
return out[0]
return out
def translate(self, text: str,
src_lang: str,
tgt_lang: str,
max_length="auto",
num_beams=4,
by_sentence=True,
clean=True,
**kwargs):
if by_sentence:
if src_lang =="eng_Latn":
sents, fillers = sentenize_with_fillers(text, self.eng_splitter, ignore_errors=True)
elif src_lang == "hyw_Armn":
sents, fillers = sentenize_with_fillers(text, self.hyw_splitter, ignore_errors=True)
else:
sents = [text]
fillers = ["", ""]
if clean:
sents = [clean_text(sent, src_lang) for sent in sents]
results = []
for sent, sep in zip(sents, fillers):
results.append(sep)
results.append(self.translate_single(sent, src_lang, tgt_lang, max_length, num_beams, **kwargs))
results.append(fillers[-1])
return " ".join(results)
if __name__ == "__main__":
print("Initializing translator...")
translator = Translator()
print("Translator initialized.")
print(translator.translate("Hello, world!", "eng_Latn", "hyw_Armn")) |