Spaces:
Sleeping
Sleeping
File size: 7,624 Bytes
6672974 8229af0 4e717cf 372f297 13cb3ce 302f20e eff32bf 04c7187 1a9af2e ac5f3b8 131bf04 2f9196a 024905c 04c7187 302f20e 405f281 8a5a456 26987c4 405f281 f59e95f 302f20e 1cd414e 26987c4 1cd414e f59e95f bc435a1 302f20e bc435a1 8a5a456 28471f6 1cd414e 920ece4 e9f68f0 13cb3ce 04c7187 1a9af2e 04c7187 1a9af2e 04c7187 1a9af2e 04c7187 302f20e 131bf04 b8e6b50 19b5412 5c187de 3e709a9 656c364 19b5412 3e709a9 19b5412 b8e6b50 8229af0 b8e6b50 ac5f3b8 302f20e 2f9196a 11d7771 19b5412 2f9196a 19b5412 2f9196a 024905c 19b5412 024905c 19b5412 024905c 2f9196a 302f20e 8f75876 302f20e 656c364 8f75876 1a9af2e ac5f3b8 8f75876 ac5f3b8 302f20e 2f9196a 024905c d777d7d 00c9e6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
# os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# os.environ['CUDA_VISIBLE_DEVICES'] = '2'
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "caching_allocator"
import gradio as gr
import numpy as np
from models import make_inpainting
import utils
from transformers import MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
from PIL import Image
import requests
from transformers import pipeline
import torch
import random
import io
import base64
import json
from diffusers import DiffusionPipeline
from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline
from diffusers import StableDiffusionUpscalePipeline
from diffusers import LDMSuperResolutionPipeline
import cv2
import onnxruntime
def removeFurniture(input_img1,
input_img2,
positive_prompt,
negative_prompt,
num_of_images,
resolution
):
print("removeFurniture")
HEIGHT = resolution
WIDTH = resolution
input_img1 = input_img1.resize((resolution, resolution))
input_img2 = input_img2.resize((resolution, resolution))
canvas_mask = np.array(input_img2)
mask = utils.get_mask(canvas_mask)
print(input_img1, mask, positive_prompt, negative_prompt)
retList= make_inpainting(positive_prompt=positive_prompt,
image=input_img1,
mask_image=mask,
negative_prompt=negative_prompt,
num_of_images=num_of_images,
resolution=resolution
)
# add the rest up to 10
while (len(retList)<10):
retList.append(None)
return retList
def imageToString(img):
output = io.BytesIO()
img.save(output, format="png")
return output.getvalue()
def segmentation(img):
print("segmentation")
# semantic_segmentation = pipeline("image-segmentation", "nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
pipe = pipeline("image-segmentation", "facebook/maskformer-swin-large-ade")
results = pipe(img)
for p in results:
p['mask'] = utils.image_to_byte_array(p['mask'])
p['mask'] = base64.b64encode(p['mask']).decode("utf-8")
#print(results)
return json.dumps(results)
def upscale(image, prompt):
print("upscale",image,prompt)
device = "cuda" if torch.cuda.is_available() else "cpu"
print("device",device)
# image.thumbnail((512, 512))
# print("resize",image)
pipe = StableDiffusionUpscalePipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16)
# pipe = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16)
pipe = pipe.to(device)
pipe.enable_attention_slicing()
ret = pipe(prompt=prompt,
image=image,
num_inference_steps=10,
guidance_scale=0)
print("ret",ret)
upscaled_image = ret.images[0]
print("up",upscaled_image)
return upscaled_image
def upscale2(image, prompt):
print("upscale2",image,prompt)
device = "cuda" if torch.cuda.is_available() else "cpu"
print("device",device)
pipe = LDMSuperResolutionPipeline.from_pretrained("CompVis/ldm-super-resolution-4x-openimages", torch_dtype=torch.float16)
pipe = pipe.to(device)
pipe.enable_attention_slicing()
upscaled_image = pipe(image, num_inference_steps=10, eta=1).images[0]
return upscaled_image
def convert_pil_to_cv2(image):
# pil_image = image.convert("RGB")
open_cv_image = np.array(image)
# RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
return open_cv_image
def inference(model_path: str, img_array: np.array) -> np.array:
options = onnxruntime.SessionOptions()
options.intra_op_num_threads = 1
options.inter_op_num_threads = 1
ort_session = onnxruntime.InferenceSession(model_path, options)
ort_inputs = {ort_session.get_inputs()[0].name: img_array}
ort_outs = ort_session.run(None, ort_inputs)
return ort_outs[0]
def post_process(img: np.array) -> np.array:
# 1, C, H, W -> C, H, W
img = np.squeeze(img)
# C, H, W -> H, W, C
img = np.transpose(img, (1, 2, 0))[:, :, ::-1].astype(np.uint8)
return img
def pre_process(img: np.array) -> np.array:
# H, W, C -> C, H, W
img = np.transpose(img[:, :, 0:3], (2, 0, 1))
# C, H, W -> 1, C, H, W
img = np.expand_dims(img, axis=0).astype(np.float32)
return img
def upscale3(image):
print("upscale3",image)
model_path = f"up_models/modelx4.ort"
img = convert_pil_to_cv2(image)
# if img.ndim == 2:
# print("upscale3","img.ndim == 2")
# img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# if img.shape[2] == 4:
# print("upscale3","img.shape[2] == 4")
# alpha = img[:, :, 3] # GRAY
# alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2BGR) # BGR
# alpha_output = post_process(inference(model_path, pre_process(alpha))) # BGR
# alpha_output = cv2.cvtColor(alpha_output, cv2.COLOR_BGR2GRAY) # GRAY
# img = img[:, :, 0:3] # BGR
# image_output = post_process(inference(model_path, pre_process(img))) # BGR
# image_output = cv2.cvtColor(image_output, cv2.COLOR_BGR2BGRA) # BGRA
# image_output[:, :, 3] = alpha_output
# print("upscale3","img.shape[2] == 3")
image_output = post_process(inference(model_path, pre_process(img))) # BGR
return image_output
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
gr.Button("FurnituRemove").click(removeFurniture,
inputs=[gr.Image(label="img", type="pil"),
gr.Image(label="mask", type="pil"),
gr.Textbox(label="positive_prompt",value="empty room"),
gr.Textbox(label="negative_prompt",value=""),
gr.Number(label="num_of_images",value=2),
gr.Number(label="resolution",value=512)
],
outputs=[
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image()])
with gr.Column():
gr.Button("Segmentation").click(segmentation, inputs=gr.Image(type="pil"), outputs=gr.JSON())
with gr.Column():
gr.Button("Upscale").click(upscale, inputs=[gr.Image(type="pil"),gr.Textbox(label="prompt",value="empty room")], outputs=gr.Image())
with gr.Column():
gr.Button("Upscale2").click(upscale2, inputs=[gr.Image(type="pil"),gr.Textbox(label="prompt",value="empty room")], outputs=gr.Image())
with gr.Column():
gr.Button("Upscale3").click(upscale3, inputs=[gr.Image(type="pil")], outputs=gr.Image())
app.launch(debug=True,share=True)
# UP 1 |