Spaces:
Sleeping
Sleeping
Commit
·
19b5412
1
Parent(s):
7217180
test2
Browse files
app.py
CHANGED
@@ -77,16 +77,18 @@ def segmentation(img):
|
|
77 |
|
78 |
def upscale(image, prompt):
|
79 |
print("upscale",image,prompt)
|
|
|
|
|
80 |
|
81 |
# image.thumbnail((512, 512))
|
82 |
# print("resize",image)
|
83 |
|
84 |
-
|
85 |
-
#
|
86 |
-
|
87 |
-
|
88 |
|
89 |
-
ret =
|
90 |
image=image,
|
91 |
num_inference_steps=10,
|
92 |
guidance_scale=0)
|
@@ -98,12 +100,14 @@ def upscale(image, prompt):
|
|
98 |
|
99 |
def upscale2(image, prompt):
|
100 |
print("upscale2",image,prompt)
|
101 |
-
|
102 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
103 |
-
|
104 |
-
pipeline = pipeline.to(device)
|
105 |
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
return upscaled_image
|
108 |
|
109 |
def convert_pil_to_cv2(image):
|
@@ -138,25 +142,29 @@ def pre_process(img: np.array) -> np.array:
|
|
138 |
return img
|
139 |
|
140 |
def upscale3(image):
|
|
|
|
|
141 |
model_path = f"up_models/modelx4.ort"
|
142 |
img = convert_pil_to_cv2(image)
|
143 |
|
144 |
-
if img.ndim == 2:
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
160 |
|
161 |
return image_output
|
162 |
|
|
|
77 |
|
78 |
def upscale(image, prompt):
|
79 |
print("upscale",image,prompt)
|
80 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
81 |
+
print("device",device)
|
82 |
|
83 |
# image.thumbnail((512, 512))
|
84 |
# print("resize",image)
|
85 |
|
86 |
+
pipe = StableDiffusionUpscalePipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16)
|
87 |
+
# pipe = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16)
|
88 |
+
pipe = pipe.to(device)
|
89 |
+
pipe.enable_attention_slicing()
|
90 |
|
91 |
+
ret = pipe(prompt=prompt,
|
92 |
image=image,
|
93 |
num_inference_steps=10,
|
94 |
guidance_scale=0)
|
|
|
100 |
|
101 |
def upscale2(image, prompt):
|
102 |
print("upscale2",image,prompt)
|
|
|
103 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
104 |
+
print("device",device)
|
|
|
105 |
|
106 |
+
pipe = LDMSuperResolutionPipeline.from_pretrained("CompVis/ldm-super-resolution-4x-openimages", torch_dtype=torch.float16)
|
107 |
+
pipe = pipe.to(device)
|
108 |
+
pipe.enable_attention_slicing()
|
109 |
+
|
110 |
+
upscaled_image = pipe(image, num_inference_steps=10, eta=1).images[0]
|
111 |
return upscaled_image
|
112 |
|
113 |
def convert_pil_to_cv2(image):
|
|
|
142 |
return img
|
143 |
|
144 |
def upscale3(image):
|
145 |
+
print("upscale3",image)
|
146 |
+
|
147 |
model_path = f"up_models/modelx4.ort"
|
148 |
img = convert_pil_to_cv2(image)
|
149 |
|
150 |
+
# if img.ndim == 2:
|
151 |
+
# print("upscale3","img.ndim == 2")
|
152 |
+
# img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
153 |
+
|
154 |
+
# if img.shape[2] == 4:
|
155 |
+
# print("upscale3","img.shape[2] == 4")
|
156 |
+
# alpha = img[:, :, 3] # GRAY
|
157 |
+
# alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2BGR) # BGR
|
158 |
+
# alpha_output = post_process(inference(model_path, pre_process(alpha))) # BGR
|
159 |
+
# alpha_output = cv2.cvtColor(alpha_output, cv2.COLOR_BGR2GRAY) # GRAY
|
160 |
+
|
161 |
+
# img = img[:, :, 0:3] # BGR
|
162 |
+
# image_output = post_process(inference(model_path, pre_process(img))) # BGR
|
163 |
+
# image_output = cv2.cvtColor(image_output, cv2.COLOR_BGR2BGRA) # BGRA
|
164 |
+
# image_output[:, :, 3] = alpha_output
|
165 |
+
|
166 |
+
# print("upscale3","img.shape[2] == 3")
|
167 |
+
image_output = post_process(inference(model_path, pre_process(img))) # BGR
|
168 |
|
169 |
return image_output
|
170 |
|