Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,44 +5,39 @@ from diffusers import DiffusionPipeline
|
|
5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
6 |
from functools import lru_cache
|
7 |
from PIL import Image
|
8 |
-
|
9 |
-
from torchvision import transforms
|
10 |
-
from transformers import CLIPImageProcessor # Updated import
|
11 |
|
12 |
@lru_cache(maxsize=1)
|
13 |
def load_pipeline():
|
14 |
-
# Decide on torch_dtype based on device; use fp16 on CUDA to lower memory usage.
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
16 |
torch_dtype = torch.float16 if device.type == "cuda" else torch.float32
|
|
|
17 |
|
18 |
-
# Load the base model in the selected precision
|
19 |
base_model = "black-forest-labs/FLUX.1-dev"
|
20 |
pipe = DiffusionPipeline.from_pretrained(
|
21 |
base_model,
|
22 |
torch_dtype=torch_dtype,
|
23 |
-
|
24 |
-
|
25 |
)
|
26 |
|
27 |
# Load LoRA weights
|
28 |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
29 |
pipe.load_lora_weights(lora_repo)
|
30 |
|
31 |
-
# Load safety checker and image processor
|
|
|
32 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
33 |
"CompVis/stable-diffusion-safety-checker"
|
34 |
)
|
35 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
36 |
|
37 |
-
# If using CUDA, apply memory optimizations:
|
38 |
if device.type == "cuda":
|
39 |
-
#
|
40 |
pipe.enable_attention_slicing()
|
41 |
-
#
|
42 |
-
|
43 |
-
pipe.enable_model_cpu_offload()
|
44 |
-
# Note: xformers memory efficient attention is omitted here because
|
45 |
-
# model offload works best when not all weights are kept on GPU.
|
46 |
|
47 |
return pipe, safety_checker, image_processor
|
48 |
|
@@ -51,7 +46,7 @@ pipe, safety_checker, image_processor = load_pipeline()
|
|
51 |
def generate_image(
|
52 |
prompt,
|
53 |
seed=42,
|
54 |
-
width=512, #
|
55 |
height=512,
|
56 |
guidance_scale=6,
|
57 |
steps=28,
|
@@ -66,10 +61,6 @@ def generate_image(
|
|
66 |
if "super realism" not in prompt.lower():
|
67 |
prompt = f"Super Realism, {prompt}"
|
68 |
|
69 |
-
# Optional: you could add a progress callback here if your pipeline supports it.
|
70 |
-
# def update_progress(step, timestep, latents):
|
71 |
-
# progress((step + 1) / steps, desc="Generating image...")
|
72 |
-
|
73 |
with torch.inference_mode():
|
74 |
result = pipe(
|
75 |
prompt=prompt,
|
@@ -82,23 +73,24 @@ def generate_image(
|
|
82 |
image = result.images[0]
|
83 |
|
84 |
progress(1, desc="Safety checking...")
|
85 |
-
#
|
86 |
safety_input = image_processor(image, return_tensors="pt")
|
87 |
np_image = np.array(image)
|
88 |
-
|
89 |
-
# Unpack safety checker results
|
90 |
_, nsfw_detected = safety_checker(
|
91 |
-
images=[np_image],
|
92 |
clip_input=safety_input.pixel_values
|
93 |
)
|
94 |
|
95 |
if nsfw_detected[0]:
|
96 |
-
return Image.new("RGB", (
|
97 |
|
|
|
|
|
|
|
98 |
return image, "Generation successful"
|
99 |
|
100 |
except Exception as e:
|
101 |
-
return Image.new("RGB", (
|
102 |
|
103 |
with gr.Blocks() as app:
|
104 |
gr.Markdown("# Flux Super Realism Generator")
|
@@ -107,7 +99,7 @@ with gr.Blocks() as app:
|
|
107 |
with gr.Column():
|
108 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
109 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
110 |
-
# Limit resolution sliders to help avoid
|
111 |
width_input = gr.Slider(256, 1024, value=512, step=64, label="Width")
|
112 |
height_input = gr.Slider(256, 1024, value=512, step=64, label="Height")
|
113 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
@@ -124,8 +116,5 @@ with gr.Blocks() as app:
|
|
124 |
outputs=[output_image, status]
|
125 |
)
|
126 |
|
127 |
-
#
|
128 |
app.queue(max_size=3).launch()
|
129 |
-
|
130 |
-
# Advanced multiple GPU support (uncomment if needed):
|
131 |
-
# pipe.enable_sequential_cpu_offload()
|
|
|
5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
6 |
from functools import lru_cache
|
7 |
from PIL import Image
|
8 |
+
from transformers import CLIPImageProcessor
|
|
|
|
|
9 |
|
10 |
@lru_cache(maxsize=1)
|
11 |
def load_pipeline():
|
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
# Use FP16 when CUDA is available, along with a revision flag if supported.
|
14 |
torch_dtype = torch.float16 if device.type == "cuda" else torch.float32
|
15 |
+
revision = "fp16" if device.type == "cuda" else None
|
16 |
|
|
|
17 |
base_model = "black-forest-labs/FLUX.1-dev"
|
18 |
pipe = DiffusionPipeline.from_pretrained(
|
19 |
base_model,
|
20 |
torch_dtype=torch_dtype,
|
21 |
+
low_cpu_mem_usage=True,
|
22 |
+
revision=revision,
|
23 |
)
|
24 |
|
25 |
# Load LoRA weights
|
26 |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
27 |
pipe.load_lora_weights(lora_repo)
|
28 |
|
29 |
+
# Load safety checker and image processor.
|
30 |
+
# If memory remains an issue, you can disable the safety checker below.
|
31 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
32 |
"CompVis/stable-diffusion-safety-checker"
|
33 |
)
|
34 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
35 |
|
|
|
36 |
if device.type == "cuda":
|
37 |
+
# Use attention slicing for further memory savings.
|
38 |
pipe.enable_attention_slicing()
|
39 |
+
# Offload layers to CPU when not in use.
|
40 |
+
pipe.enable_sequential_cpu_offload()
|
|
|
|
|
|
|
41 |
|
42 |
return pipe, safety_checker, image_processor
|
43 |
|
|
|
46 |
def generate_image(
|
47 |
prompt,
|
48 |
seed=42,
|
49 |
+
width=512, # Keep resolution low by default
|
50 |
height=512,
|
51 |
guidance_scale=6,
|
52 |
steps=28,
|
|
|
61 |
if "super realism" not in prompt.lower():
|
62 |
prompt = f"Super Realism, {prompt}"
|
63 |
|
|
|
|
|
|
|
|
|
64 |
with torch.inference_mode():
|
65 |
result = pipe(
|
66 |
prompt=prompt,
|
|
|
73 |
image = result.images[0]
|
74 |
|
75 |
progress(1, desc="Safety checking...")
|
76 |
+
# Process image for safety checking
|
77 |
safety_input = image_processor(image, return_tensors="pt")
|
78 |
np_image = np.array(image)
|
|
|
|
|
79 |
_, nsfw_detected = safety_checker(
|
80 |
+
images=[np_image],
|
81 |
clip_input=safety_input.pixel_values
|
82 |
)
|
83 |
|
84 |
if nsfw_detected[0]:
|
85 |
+
return Image.new("RGB", (width, height)), "NSFW content detected"
|
86 |
|
87 |
+
# Clear CUDA cache
|
88 |
+
if device.type == "cuda":
|
89 |
+
torch.cuda.empty_cache()
|
90 |
return image, "Generation successful"
|
91 |
|
92 |
except Exception as e:
|
93 |
+
return Image.new("RGB", (width, height)), f"Error: {str(e)}"
|
94 |
|
95 |
with gr.Blocks() as app:
|
96 |
gr.Markdown("# Flux Super Realism Generator")
|
|
|
99 |
with gr.Column():
|
100 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
101 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
102 |
+
# Limit the resolution sliders to help avoid memory overuse.
|
103 |
width_input = gr.Slider(256, 1024, value=512, step=64, label="Width")
|
104 |
height_input = gr.Slider(256, 1024, value=512, step=64, label="Height")
|
105 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
|
|
116 |
outputs=[output_image, status]
|
117 |
)
|
118 |
|
119 |
+
# Queue settings to limit concurrent requests
|
120 |
app.queue(max_size=3).launch()
|
|
|
|
|
|