Spaces:
Runtime error
Runtime error
Anurag Bhardwaj
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,44 +5,39 @@ from diffusers import DiffusionPipeline
|
|
| 5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
| 6 |
from functools import lru_cache
|
| 7 |
from PIL import Image
|
| 8 |
-
|
| 9 |
-
from torchvision import transforms
|
| 10 |
-
from transformers import CLIPImageProcessor # Updated import
|
| 11 |
|
| 12 |
@lru_cache(maxsize=1)
|
| 13 |
def load_pipeline():
|
| 14 |
-
# Decide on torch_dtype based on device; use fp16 on CUDA to lower memory usage.
|
| 15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 16 |
torch_dtype = torch.float16 if device.type == "cuda" else torch.float32
|
|
|
|
| 17 |
|
| 18 |
-
# Load the base model in the selected precision
|
| 19 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 20 |
pipe = DiffusionPipeline.from_pretrained(
|
| 21 |
base_model,
|
| 22 |
torch_dtype=torch_dtype,
|
| 23 |
-
|
| 24 |
-
|
| 25 |
)
|
| 26 |
|
| 27 |
# Load LoRA weights
|
| 28 |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
| 29 |
pipe.load_lora_weights(lora_repo)
|
| 30 |
|
| 31 |
-
# Load safety checker and image processor
|
|
|
|
| 32 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
| 33 |
"CompVis/stable-diffusion-safety-checker"
|
| 34 |
)
|
| 35 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 36 |
|
| 37 |
-
# If using CUDA, apply memory optimizations:
|
| 38 |
if device.type == "cuda":
|
| 39 |
-
#
|
| 40 |
pipe.enable_attention_slicing()
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
pipe.enable_model_cpu_offload()
|
| 44 |
-
# Note: xformers memory efficient attention is omitted here because
|
| 45 |
-
# model offload works best when not all weights are kept on GPU.
|
| 46 |
|
| 47 |
return pipe, safety_checker, image_processor
|
| 48 |
|
|
@@ -51,7 +46,7 @@ pipe, safety_checker, image_processor = load_pipeline()
|
|
| 51 |
def generate_image(
|
| 52 |
prompt,
|
| 53 |
seed=42,
|
| 54 |
-
width=512, #
|
| 55 |
height=512,
|
| 56 |
guidance_scale=6,
|
| 57 |
steps=28,
|
|
@@ -66,10 +61,6 @@ def generate_image(
|
|
| 66 |
if "super realism" not in prompt.lower():
|
| 67 |
prompt = f"Super Realism, {prompt}"
|
| 68 |
|
| 69 |
-
# Optional: you could add a progress callback here if your pipeline supports it.
|
| 70 |
-
# def update_progress(step, timestep, latents):
|
| 71 |
-
# progress((step + 1) / steps, desc="Generating image...")
|
| 72 |
-
|
| 73 |
with torch.inference_mode():
|
| 74 |
result = pipe(
|
| 75 |
prompt=prompt,
|
|
@@ -82,23 +73,24 @@ def generate_image(
|
|
| 82 |
image = result.images[0]
|
| 83 |
|
| 84 |
progress(1, desc="Safety checking...")
|
| 85 |
-
#
|
| 86 |
safety_input = image_processor(image, return_tensors="pt")
|
| 87 |
np_image = np.array(image)
|
| 88 |
-
|
| 89 |
-
# Unpack safety checker results
|
| 90 |
_, nsfw_detected = safety_checker(
|
| 91 |
-
images=[np_image],
|
| 92 |
clip_input=safety_input.pixel_values
|
| 93 |
)
|
| 94 |
|
| 95 |
if nsfw_detected[0]:
|
| 96 |
-
return Image.new("RGB", (
|
| 97 |
|
|
|
|
|
|
|
|
|
|
| 98 |
return image, "Generation successful"
|
| 99 |
|
| 100 |
except Exception as e:
|
| 101 |
-
return Image.new("RGB", (
|
| 102 |
|
| 103 |
with gr.Blocks() as app:
|
| 104 |
gr.Markdown("# Flux Super Realism Generator")
|
|
@@ -107,7 +99,7 @@ with gr.Blocks() as app:
|
|
| 107 |
with gr.Column():
|
| 108 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
| 109 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
| 110 |
-
# Limit resolution sliders to help avoid
|
| 111 |
width_input = gr.Slider(256, 1024, value=512, step=64, label="Width")
|
| 112 |
height_input = gr.Slider(256, 1024, value=512, step=64, label="Height")
|
| 113 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
|
@@ -124,8 +116,5 @@ with gr.Blocks() as app:
|
|
| 124 |
outputs=[output_image, status]
|
| 125 |
)
|
| 126 |
|
| 127 |
-
#
|
| 128 |
app.queue(max_size=3).launch()
|
| 129 |
-
|
| 130 |
-
# Advanced multiple GPU support (uncomment if needed):
|
| 131 |
-
# pipe.enable_sequential_cpu_offload()
|
|
|
|
| 5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
| 6 |
from functools import lru_cache
|
| 7 |
from PIL import Image
|
| 8 |
+
from transformers import CLIPImageProcessor
|
|
|
|
|
|
|
| 9 |
|
| 10 |
@lru_cache(maxsize=1)
|
| 11 |
def load_pipeline():
|
|
|
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
# Use FP16 when CUDA is available, along with a revision flag if supported.
|
| 14 |
torch_dtype = torch.float16 if device.type == "cuda" else torch.float32
|
| 15 |
+
revision = "fp16" if device.type == "cuda" else None
|
| 16 |
|
|
|
|
| 17 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 18 |
pipe = DiffusionPipeline.from_pretrained(
|
| 19 |
base_model,
|
| 20 |
torch_dtype=torch_dtype,
|
| 21 |
+
low_cpu_mem_usage=True,
|
| 22 |
+
revision=revision,
|
| 23 |
)
|
| 24 |
|
| 25 |
# Load LoRA weights
|
| 26 |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
| 27 |
pipe.load_lora_weights(lora_repo)
|
| 28 |
|
| 29 |
+
# Load safety checker and image processor.
|
| 30 |
+
# If memory remains an issue, you can disable the safety checker below.
|
| 31 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
| 32 |
"CompVis/stable-diffusion-safety-checker"
|
| 33 |
)
|
| 34 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 35 |
|
|
|
|
| 36 |
if device.type == "cuda":
|
| 37 |
+
# Use attention slicing for further memory savings.
|
| 38 |
pipe.enable_attention_slicing()
|
| 39 |
+
# Offload layers to CPU when not in use.
|
| 40 |
+
pipe.enable_sequential_cpu_offload()
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
return pipe, safety_checker, image_processor
|
| 43 |
|
|
|
|
| 46 |
def generate_image(
|
| 47 |
prompt,
|
| 48 |
seed=42,
|
| 49 |
+
width=512, # Keep resolution low by default
|
| 50 |
height=512,
|
| 51 |
guidance_scale=6,
|
| 52 |
steps=28,
|
|
|
|
| 61 |
if "super realism" not in prompt.lower():
|
| 62 |
prompt = f"Super Realism, {prompt}"
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
with torch.inference_mode():
|
| 65 |
result = pipe(
|
| 66 |
prompt=prompt,
|
|
|
|
| 73 |
image = result.images[0]
|
| 74 |
|
| 75 |
progress(1, desc="Safety checking...")
|
| 76 |
+
# Process image for safety checking
|
| 77 |
safety_input = image_processor(image, return_tensors="pt")
|
| 78 |
np_image = np.array(image)
|
|
|
|
|
|
|
| 79 |
_, nsfw_detected = safety_checker(
|
| 80 |
+
images=[np_image],
|
| 81 |
clip_input=safety_input.pixel_values
|
| 82 |
)
|
| 83 |
|
| 84 |
if nsfw_detected[0]:
|
| 85 |
+
return Image.new("RGB", (width, height)), "NSFW content detected"
|
| 86 |
|
| 87 |
+
# Clear CUDA cache
|
| 88 |
+
if device.type == "cuda":
|
| 89 |
+
torch.cuda.empty_cache()
|
| 90 |
return image, "Generation successful"
|
| 91 |
|
| 92 |
except Exception as e:
|
| 93 |
+
return Image.new("RGB", (width, height)), f"Error: {str(e)}"
|
| 94 |
|
| 95 |
with gr.Blocks() as app:
|
| 96 |
gr.Markdown("# Flux Super Realism Generator")
|
|
|
|
| 99 |
with gr.Column():
|
| 100 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
| 101 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
| 102 |
+
# Limit the resolution sliders to help avoid memory overuse.
|
| 103 |
width_input = gr.Slider(256, 1024, value=512, step=64, label="Width")
|
| 104 |
height_input = gr.Slider(256, 1024, value=512, step=64, label="Height")
|
| 105 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
|
|
|
| 116 |
outputs=[output_image, status]
|
| 117 |
)
|
| 118 |
|
| 119 |
+
# Queue settings to limit concurrent requests
|
| 120 |
app.queue(max_size=3).launch()
|
|
|
|
|
|
|
|
|