Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,15 +9,19 @@ from PIL import Image
|
|
9 |
from torchvision import transforms
|
10 |
from transformers import CLIPImageProcessor # Updated import
|
11 |
|
12 |
-
|
13 |
-
|
14 |
@lru_cache(maxsize=1)
|
15 |
def load_pipeline():
|
16 |
-
#
|
|
|
|
|
|
|
|
|
17 |
base_model = "black-forest-labs/FLUX.1-dev"
|
18 |
pipe = DiffusionPipeline.from_pretrained(
|
19 |
base_model,
|
20 |
-
torch_dtype=
|
|
|
|
|
21 |
)
|
22 |
|
23 |
# Load LoRA weights
|
@@ -30,11 +34,15 @@ def load_pipeline():
|
|
30 |
)
|
31 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
32 |
|
33 |
-
#
|
34 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
if device.type == "cuda":
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
return pipe, safety_checker, image_processor
|
40 |
|
@@ -43,8 +51,8 @@ pipe, safety_checker, image_processor = load_pipeline()
|
|
43 |
def generate_image(
|
44 |
prompt,
|
45 |
seed=42,
|
46 |
-
width=
|
47 |
-
height=
|
48 |
guidance_scale=6,
|
49 |
steps=28,
|
50 |
progress=gr.Progress()
|
@@ -58,9 +66,9 @@ def generate_image(
|
|
58 |
if "super realism" not in prompt.lower():
|
59 |
prompt = f"Super Realism, {prompt}"
|
60 |
|
61 |
-
#
|
62 |
-
def update_progress(step, timestep, latents):
|
63 |
-
|
64 |
|
65 |
with torch.inference_mode():
|
66 |
result = pipe(
|
@@ -70,7 +78,6 @@ def generate_image(
|
|
70 |
guidance_scale=guidance_scale,
|
71 |
num_inference_steps=steps,
|
72 |
generator=generator,
|
73 |
-
|
74 |
)
|
75 |
image = result.images[0]
|
76 |
|
@@ -100,8 +107,9 @@ with gr.Blocks() as app:
|
|
100 |
with gr.Column():
|
101 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
102 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
103 |
-
|
104 |
-
|
|
|
105 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
106 |
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
107 |
submit = gr.Button("Generate")
|
@@ -119,6 +127,5 @@ with gr.Blocks() as app:
|
|
119 |
# Rate limiting: 1 request at a time, with a max queue size of 3
|
120 |
app.queue(max_size=3).launch()
|
121 |
|
122 |
-
#
|
123 |
-
# pipe.enable_model_cpu_offload()
|
124 |
# pipe.enable_sequential_cpu_offload()
|
|
|
9 |
from torchvision import transforms
|
10 |
from transformers import CLIPImageProcessor # Updated import
|
11 |
|
|
|
|
|
12 |
@lru_cache(maxsize=1)
|
13 |
def load_pipeline():
|
14 |
+
# Decide on torch_dtype based on device; use fp16 on CUDA to lower memory usage.
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
torch_dtype = torch.float16 if device.type == "cuda" else torch.float32
|
17 |
+
|
18 |
+
# Load the base model in the selected precision
|
19 |
base_model = "black-forest-labs/FLUX.1-dev"
|
20 |
pipe = DiffusionPipeline.from_pretrained(
|
21 |
base_model,
|
22 |
+
torch_dtype=torch_dtype,
|
23 |
+
# low_cpu_mem_usage helps reduce CPU RAM usage during loading
|
24 |
+
low_cpu_mem_usage=True
|
25 |
)
|
26 |
|
27 |
# Load LoRA weights
|
|
|
34 |
)
|
35 |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
36 |
|
37 |
+
# If using CUDA, apply memory optimizations:
|
|
|
38 |
if device.type == "cuda":
|
39 |
+
# Attention slicing splits up attention computations to save memory.
|
40 |
+
pipe.enable_attention_slicing()
|
41 |
+
# Instead of moving the entire model to GPU, offload parts to CPU when not needed.
|
42 |
+
# This is particularly useful on a 15GB GPU.
|
43 |
+
pipe.enable_model_cpu_offload()
|
44 |
+
# Note: xformers memory efficient attention is omitted here because
|
45 |
+
# model offload works best when not all weights are kept on GPU.
|
46 |
|
47 |
return pipe, safety_checker, image_processor
|
48 |
|
|
|
51 |
def generate_image(
|
52 |
prompt,
|
53 |
seed=42,
|
54 |
+
width=512, # default resolution adjusted to 512 for safety
|
55 |
+
height=512,
|
56 |
guidance_scale=6,
|
57 |
steps=28,
|
58 |
progress=gr.Progress()
|
|
|
66 |
if "super realism" not in prompt.lower():
|
67 |
prompt = f"Super Realism, {prompt}"
|
68 |
|
69 |
+
# Optional: you could add a progress callback here if your pipeline supports it.
|
70 |
+
# def update_progress(step, timestep, latents):
|
71 |
+
# progress((step + 1) / steps, desc="Generating image...")
|
72 |
|
73 |
with torch.inference_mode():
|
74 |
result = pipe(
|
|
|
78 |
guidance_scale=guidance_scale,
|
79 |
num_inference_steps=steps,
|
80 |
generator=generator,
|
|
|
81 |
)
|
82 |
image = result.images[0]
|
83 |
|
|
|
107 |
with gr.Column():
|
108 |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
109 |
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
110 |
+
# Limit resolution sliders to help avoid GPU memory overuse on a 15GB A100
|
111 |
+
width_input = gr.Slider(256, 1024, value=512, step=64, label="Width")
|
112 |
+
height_input = gr.Slider(256, 1024, value=512, step=64, label="Height")
|
113 |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
114 |
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
115 |
submit = gr.Button("Generate")
|
|
|
127 |
# Rate limiting: 1 request at a time, with a max queue size of 3
|
128 |
app.queue(max_size=3).launch()
|
129 |
|
130 |
+
# Advanced multiple GPU support (uncomment if needed):
|
|
|
131 |
# pipe.enable_sequential_cpu_offload()
|