File size: 18,824 Bytes
695e093 41cb4a0 936ba51 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 936ba51 695e093 41cb4a0 936ba51 41cb4a0 936ba51 41cb4a0 936ba51 41cb4a0 936ba51 41cb4a0 936ba51 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 5f86c2f 695e093 41cb4a0 5f86c2f 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 5f86c2f 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 5f86c2f 41cb4a0 5f86c2f 41cb4a0 936ba51 41cb4a0 695e093 41cb4a0 936ba51 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 41cb4a0 695e093 5f86c2f 695e093 41cb4a0 5f86c2f 695e093 41cb4a0 695e093 41cb4a0 695e093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import gradio as gr
import networkx as nx
import random
import logging
import ast
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# --- lib directory code (graph_extract.py, visualize.py, samples.py would go here) ---
# Placeholder for your NLP pipeline (replace with your actual implementation)
def triplextract(text: str, entity_types: list[str], predicates: list[str]) -> str:
"""
Extracts triples (subject, predicate, object) from the given text.
Args:
text: The input text.
entity_types: A list of entity types to consider.
predicates: A list of predicates to consider.
Returns:
A string representation of the extracted triples, or an error message if extraction fails.
"""
logging.debug(f"triplextract called with text: {text}, entity_types: {entity_types}, predicates: {predicates}")
print(f"triplextract input:\ntext: {text}\nentity_types: {entity_types}\npredicates: {predicates}")
try:
# Replace this with your actual NLP pipeline logic
# This is a placeholder for demonstration purposes
# Example: "Alice knows Bob" -> ("Alice", "knows", "Bob")
# TEMPORARY - Hardcoded triple for testing
# if "Global warming" in text:
# prediction = "[('Global warming', 'causes', 'climate changes')]" #hardcoded string
# print(f"triplextract output: {prediction}")
# return prediction
# else:
# prediction = "[]"
# print(f"triplextract output: {prediction}")
# return "[]"
if "Global warming" in text:
triples = [
('Global warming', 'causes', 'climate changes'),
('temperature', 'increased by', '1C'),
('warming', 'caused by', 'human activities'),
('Paris Agreement', 'aims to limit', 'temperature increase')
]
prediction = str(triples)
print(f"triplextract output: {prediction}")
return prediction
else:
prediction = "[]"
print(f"triplextract output: {prediction}")
return "[]"
# ... (Remove this hardcoding once the rest works)
except Exception as e:
error_message = f"Error in triplextract: {str(e)}"
logging.exception(error_message) # Log the full exception with traceback
return f"Error: {error_message}" # Return an error message as a string
def parse_triples(triples_str: str) -> tuple[list[str], list[tuple[str, str, str]]]:
"""
Parses the string representation of triples into lists of entities and relationships.
Args:
triples_str: A string representation of the triples (e.g., "[('Alice', 'knows', 'Bob')]").
Returns:
A tuple containing:
- A list of unique entities (strings).
- A list of relationships (tuples of (subject, predicate, object)).
"""
logging.debug(f"parse_triples called with triples_str: {triples_str}")
print(f"parse_triples input: {triples_str}")
try:
# Replace this with your actual parsing logic based on triplextract's output
# This is a placeholder for demonstration purposes
# Properly handle error cases where ast.literal_eval fails
try:
triples_list = ast.literal_eval(triples_str) # Safely evaluate the string as a list
except (SyntaxError, ValueError) as e:
error_message = f"Error in parse_triples: Invalid triples string format: {str(e)}"
logging.error(error_message)
return [], [] # Return empty lists to prevent further errors
except Exception as e:
error_message = f"Unexpected error in parse_triples during literal_eval: {str(e)}"
logging.exception(error_message)
return [], []
entities = set()
relationships = []
if isinstance(triples_list, list):
for triple in triples_list:
if isinstance(triple, tuple) and len(triple) == 3:
subject, predicate, object_ = triple # Unpack the triple
entities.add(subject)
entities.add(object_)
relationships.append((subject, predicate, object_))
else:
logging.warning(f"Invalid triple format: {triple}. Skipping.")
else:
logging.warning(f"Triples list is not a list, but {type(triples_list)}. Returning empty lists.")
return [], []
return list(entities), relationships
except Exception as e:
error_message = f"Error in parse_triples: {str(e)}"
logging.exception(error_message)
return [], [] # Return empty lists in case of any error
import networkx as nx
def create_graph(entities: list[str], relationships: list[tuple[str, str, str]]) -> nx.Graph:
"""
Creates a networkx graph from the given entities and relationships.
Args:
entities: A list of entity names (strings).
relationships: A list of tuples representing relationships (subject, predicate, object).
Returns:
A networkx Graph object.
"""
logging.debug(f"create_graph called with entities: {entities}, relationships: {relationships}")
print(f"create_graph input:\nentities: {entities}\nrelationships: {relationships}")
try:
G = nx.Graph()
G.add_nodes_from(entities)
G.add_edges_from([(subject, object_) for subject, _, object_ in relationships]) # Add edges
# Add edge attributes to store predicates
for subject, predicate, object_ in relationships:
if G.has_edge(subject, object_):
G[subject][object_]['predicate'] = predicate # Store the predicate as an attribute
else:
logging.warning(f"Edge ({subject}, {object_}) not found in the graph.")
if not nx.is_graph(G): # Add this check
logging.error("Error: create_graph did not create a valid networkx graph")
return nx.Graph() # Return an empty graph
return G
except Exception as e:
error_message = f"Error in create_graph: {str(e)}"
logging.exception(error_message)
return nx.Graph() # Return an empty graph
# visualize.py (Implement your Bokeh and Plotly visualizations here)
from bokeh.plotting import figure, show
from bokeh.models import Circle, MultiLine, EdgesAndLinkedNodes, NodesAndLinkedEdges, StaticLayoutProvider
from bokeh.palettes import Category20
from bokeh.io import output_notebook
import networkx as nx
def create_bokeh_plot(graph: nx.Graph, layout_type: str):
"""Creates a Bokeh plot of the given networkx graph."""
try:
if not nx.is_graph(graph): # Add this check
logging.error("Error: create_bokeh_plot received an invalid networkx graph")
return None # Or return a placeholder plot
if layout_type == 'spring':
pos = nx.spring_layout(graph, seed=42)
elif layout_type == 'fruchterman_reingold':
pos = nx.fruchterman_reingold_layout(graph, seed=42)
elif layout_type == 'circular':
pos = nx.circular_layout(graph)
elif layout_type == 'random':
pos = nx.random_layout(graph, seed=42)
elif layout_type == 'spectral':
pos = nx.spectral_layout(graph)
elif layout_type == 'shell':
pos = nx.shell_layout(graph)
else:
pos = nx.spring_layout(graph, seed=42) # Default layout
node_indices = list(graph.nodes())
x, y = zip(*[pos[i] for i in node_indices])
node_data = dict(index=node_indices, x=x, y=y, name=node_indices, size=[15]*len(node_indices))
edge_data = dict(start=[pos[u][0] for u, v in graph.edges()],
end=[pos[v][0] for u, v in graph.edges()],
xstart=[pos[u][0] for u, v in graph.edges()],
ystart=[pos[u][1] for u, v in graph.edges()],
xend=[pos[v][0] for u, v in graph.edges()],
yend=[pos[v][1] for u, v in graph.edges()])
plot = figure(title="Knowledge Graph", width=600, height=600,
tools="pan,wheel_zoom,box_zoom,reset,save",
x_range=(min(x)-0.1, max(x)+0.1), y_range=(min(y)-0.1, max(y)+0.1))
plot.scatter("x", "y", size="size", source=node_data, name="nodes")
plot.multi_line(xs=[[edge_data['xstart'][i], edge_data['xend'][i]] for i in range(len(graph.edges()))],
ys=[[edge_data['ystart'][i], edge_data['yend'][i]] for i in range(len(graph.edges()))],
color="navy", alpha=0.5)
return plot
except Exception as e:
error_message = f"Error creating Bokeh plot: {str(e)}"
logging.exception(error_message)
return None # Or return a placeholder plot
def create_plotly_plot(graph: nx.Graph, layout_type: str):
"""Creates a Plotly plot of the given networkx graph."""
try:
if not nx.is_graph(graph): # Add this check
logging.error("Error: create_plotly_plot received an invalid networkx graph")
return None # Or return a placeholder plot
import plotly.graph_objects as go
if layout_type == 'spring':
pos = nx.spring_layout(graph, seed=42)
elif layout_type == 'fruchterman_reingold':
pos = nx.fruchterman_reingold_layout(graph, seed=42)
elif layout_type == 'circular':
pos = nx.circular_layout(graph)
elif layout_type == 'random':
pos = nx.random_layout(graph, seed=42)
elif layout_type == 'spectral':
pos = nx.spectral_layout(graph)
elif layout_type == 'shell':
pos = nx.shell_layout(graph)
else:
pos = nx.spring_layout(graph, seed=42) # Default layout
edge_x = []
edge_y = []
for edge in graph.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.append(x0)
edge_y.append(y0)
edge_x.append(x1)
edge_y.append(y1)
edge_x.append(None)
edge_y.append(None)
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines')
node_x = []
node_y = []
for node in graph.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers',
hoverinfo='text',
marker=dict(
showscale=False,
colorscale='YlGnBu',
reversescale=True,
color=[],
size=10,
line_width=2))
node_adjacencies = []
node_text = []
for node, adjacencies in enumerate(graph.adjacency()):
node_adjacencies.append(len(adjacencies[1]))
node_text.append(f"{adjacencies[0]} (# of connections: {len(adjacencies[1])})")
node_trace.marker.color = node_adjacencies
node_trace.text = node_text
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title='Knowledge Graph',
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[dict(
text="Replace with your attribution text",
showarrow=False,
xref="paper", yref="paper",
x=0.005, y=-0.002)],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
return fig
except Exception as e:
error_message = f"Error creating Plotly plot: {str(e)}"
logging.exception(error_message)
return None # Or return a placeholder plot
# samples.py
from dataclasses import dataclass
@dataclass
class Sample:
text_input: str
entity_types: str
predicates: str
snippets = {
"Sample 1": Sample(
text_input="Alice knows Bob.",
entity_types="Person",
predicates="knows"
),
"Sample 2": Sample(
text_input="The cat sat on the mat.",
entity_types="Animal, Object",
predicates="sat on"
),
"Sample 3": Sample(
text_input="Global warming is causing significant changes to Earth's climate. The average global \
temperature has increased by approximately 1C since the pre-industrial era. This warming is \
primarily caused by human activities, particularly the emission of greenhouse gases like carbon dioxide. \
The Paris Agreement, signed in 2015, aims to limit global temperature increase to well below 2°C above \
pre-industrial levels. To achieve this goal, many countries are implementing policies to reduce carbon \
emissions and transition to renewable energy sources.",
entity_types="Event, Measure, Activity, Agreement",
predicates="causes, increased by, aims to limit"
)
}
# --- Gradio Interface Code ---
WORD_LIMIT = 300
def process_text(text: str, entity_types: str, predicates: str, layout_type: str, visualization_type: str):
print(f"process_text input:\ntext: {text}\nentity_types: {entity_types}\npredicates: {predicates}")
if not text:
return None, None, "Please enter some text."
words = text.split()
if len(words) > WORD_LIMIT:
return None, None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}"
entity_types_list = [et.strip() for et in entity_types.split(",") if et.strip()]
predicates_list = [p.strip() for p in predicates.split(",") if p.strip()]
if not entity_types_list:
return None, None, "Please enter at least one entity type."
if not predicates_list:
return None, None, "Please enter at least one predicate."
try:
prediction = triplextract(text, entity_types_list, predicates_list) # Pass lists, not strings
if prediction and prediction.startswith("Error"): # Check for errors
return None, None, prediction
entities, relationships = parse_triples(prediction)
if not entities and not relationships:
return None, None, "No entities or relationships found. Try different text or check your input."
G = create_graph(entities, relationships)
if visualization_type == 'Bokeh':
fig = create_bokeh_plot(G, layout_type)
else:
fig = create_plotly_plot(G, layout_type)
output_text = f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}"
return G, fig, output_text
except Exception as e:
error_message = f"Error in process_text: {str(e)}"
logging.exception(error_message)
return None, None, f"An error occurred: {str(e)}"
def update_graph(G: nx.Graph, layout_type: str, visualization_type: str):
if G is None:
return None, "Please process text first."
try:
if visualization_type == 'Bokeh':
fig = create_bokeh_plot(G, layout_type)
else:
fig = create_plotly_plot(G, layout_type)
return fig, ""
except Exception as e:
error_message = f"Error in update_graph: {str(e)}"
logging.exception(error_message)
return None, f"An error occurred while updating the graph: {str(e)}"
def update_inputs(sample_name: str):
sample = snippets[sample_name]
return sample.text_input, sample.entity_types, sample.predicates
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown("# Knowledge Graph Extractor")
# Provide a fallback in case snippets is empty
sample_keys = list(snippets.keys())
default_sample_name = random.choice(sample_keys) if sample_keys else ""
default_sample = snippets.get(default_sample_name) if default_sample_name else None # Safely get the sample
with gr.Row():
with gr.Column(scale=1):
sample_dropdown = gr.Dropdown(choices=sample_keys, label="Select Sample", value=default_sample_name)
input_text = gr.Textbox(label="Input Text", lines=5, value=default_sample.text_input if default_sample else "")
entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types if default_sample else "")
predicates = gr.Textbox(label="Predicates", value=default_sample.predicates if default_sample else "")
layout_type = gr.Dropdown(
choices=['spring', 'fruchterman_reingold', 'circular', 'random', 'spectral', 'shell'],
label="Layout Type", value='spring')
visualization_type = gr.Radio(choices=['Bokeh', 'Plotly'], label="Visualization Type", value='Bokeh')
process_btn = gr.Button("Process Text")
with gr.Column(scale=2):
output_graph = gr.Plot(label="Knowledge Graph")
error_message = gr.Textbox(label="Textual Output")
graph_state = gr.State(None)
def process_and_update(text: str, entity_types: str, predicates: str, layout_type: str, visualization_type: str):
G, fig, output = process_text(text, entity_types, predicates, layout_type, visualization_type)
print(f"process_and_update: G = {G}") # Debug
return G, fig, output
def update_graph_wrapper(G: nx.Graph, layout_type: str, visualization_type: str):
print(f"update_graph_wrapper: G = {G}") # Debug
if G is not None:
fig, _ = update_graph(G, layout_type, visualization_type)
return fig
sample_dropdown.change(update_inputs, inputs=[sample_dropdown], outputs=[input_text, entity_types, predicates])
process_btn.click(process_and_update,
inputs=[input_text, entity_types, predicates, layout_type, visualization_type],
outputs=[graph_state, output_graph, error_message])
layout_type.change(update_graph_wrapper,
inputs=[graph_state, layout_type, visualization_type],
outputs=[output_graph])
visualization_type.change(update_graph_wrapper,
inputs=[graph_state, layout_type, visualization_type],
outputs=[output_graph])
if __name__ == "__main__":
demo.launch(share=True) |