|
import pandas as pd |
|
import json |
|
import gradio as gr |
|
from pathlib import Path |
|
from ragatouille import RAGPretrainedModel |
|
from gradio_client import Client |
|
from tempfile import NamedTemporaryFile |
|
from sentence_transformers import CrossEncoder |
|
import numpy as np |
|
from time import perf_counter |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
VECTOR_COLUMN_NAME = "vector" |
|
TEXT_COLUMN_NAME = "text" |
|
QUIZ_QUESTIONS = 10 |
|
proj_dir = Path.cwd() |
|
client = Client("Qwen/Qwen1.5-110B-Chat-demo") |
|
|
|
|
|
from backend.semantic_search import table, retriever |
|
|
|
|
|
RAG_db = gr.State() |
|
quiz_data = None |
|
|
|
def system_instructions(question_difficulty, topic, documents_str): |
|
return f""" |
|
<s> [INST] You are a great teacher and your task is to create {QUIZ_QUESTIONS} questions with 4 choices each, |
|
with {question_difficulty} difficulty about the topic "{topic}" only from the given documents: |
|
{documents_str}. Provide output in JSON format as follows: |
|
"Q#":"", "Q#:C1":"", "Q#:C2":"", "Q#:C3":"", "Q#:C4":"", "A#":"Q#:C#" |
|
Example: {{ "A10":"Q10:C3" }} [/INST]""" |
|
|
|
def json_to_excel(output_json): |
|
data = [] |
|
for i in range(1, QUIZ_QUESTIONS + 1): |
|
question_key, answer_key = f"Q{i}", f"A{i}" |
|
question = output_json.get(question_key, '') |
|
correct_answer_key = output_json.get(answer_key, '') |
|
correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else '' |
|
options = [output_json.get(f"{question_key}:C{j}", '') for j in range(1, 5)] |
|
data.append([question, "Multiple Choice", *options, correct_answer, 30, '']) |
|
|
|
df = pd.DataFrame(data, columns=["Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Correct Answer", "Time in seconds", "Image Link"]) |
|
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx") |
|
df.to_excel(temp_file.name, index=False) |
|
return temp_file.name |
|
|
|
def retrieve_documents(topic, cross_encoder): |
|
top_k_rank = 10 |
|
documents = [] |
|
|
|
if cross_encoder == '(HIGH ACCURATE) ColBERT': |
|
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") |
|
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') |
|
documents_full = RAG_db.value.search(topic, k=top_k_rank) |
|
documents = [item['content'] for item in documents_full] |
|
else: |
|
query_vec = retriever.encode(topic) |
|
doc_results = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list() |
|
documents = [doc[TEXT_COLUMN_NAME] for doc in doc_results] |
|
|
|
if cross_encoder == '(ACCURATE) BGE reranker': |
|
model = CrossEncoder('BAAI/bge-reranker-base') |
|
scores = model.predict([[topic, doc] for doc in documents]) |
|
documents = [documents[idx] for idx in np.argsort(scores)[::-1][:top_k_rank]] |
|
|
|
return documents |
|
|
|
def generate_quiz(question_difficulty, topic, cross_encoder): |
|
documents = retrieve_documents(topic, cross_encoder) |
|
formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents)) |
|
|
|
try: |
|
response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")[1][0][1] |
|
output_json = json.loads(response[response.find('{'):response.rfind('}') + 1]) |
|
global quiz_data |
|
quiz_data = output_json |
|
return ['Quiz Generated!'] + [gr.Radio(choices=[output_json.get(f"Q{i}:C{j}", "") for j in range(1, 5)], label=output_json.get(f"Q{i}"), visible=True) for i in range(1, QUIZ_QUESTIONS + 1)] + [json_to_excel(output_json)] |
|
except json.JSONDecodeError as e: |
|
logger.error(f"Failed to decode JSON: {e}") |
|
return ["Error generating quiz"] |
|
|
|
def compare_answers(*user_answers): |
|
score = sum(1 for i, answer in enumerate(user_answers) if answer == quiz_data.get(quiz_data.get(f"A{i+1}"), "")) |
|
return f"### {'Excellent!' if score > 7 else 'Good!' if score > 5 else 'Keep Trying!'} You got {score} out of {QUIZ_QUESTIONS}!" |
|
|
|
colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple") |
|
|
|
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT: |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
gr.Image(value='logo.png', height=200, width=200) |
|
with gr.Column(scale=6): |
|
gr.HTML(""" |
|
<center> |
|
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL, SUTHUKENY</span> STUDENTS QUIZBOT</h1> |
|
<h2>Generative AI-powered Capacity building for STUDENTS</h2> |
|
<i>⚠️ STUDENTS CAN CREATE QUIZ AND EVALUATE BY THEMSELVES! ⚠️</i> |
|
</center> |
|
""") |
|
|
|
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic from Class 10 CBSE") |
|
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="Select Quiz Difficulty") |
|
model_radio = gr.Radio(["(ACCURATE) BGE reranker", "(HIGH ACCURATE) ColBERT"], value="(ACCURATE) BGE reranker", label="Embeddings Model") |
|
|
|
generate_quiz_btn = gr.Button("Generate Quiz! 🚀") |
|
quiz_msg = gr.Textbox() |
|
question_radios = [gr.Radio(visible=False) for _ in range(QUIZ_QUESTIONS)] |
|
|
|
generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")], fn=generate_quiz) |
|
|
|
check_button = gr.Button("Check Score") |
|
score_textbox = gr.Markdown() |
|
check_button.click(inputs=question_radios, outputs=score_textbox, fn=compare_answers) |
|
|
|
QUIZBOT.queue() |
|
QUIZBOT.launch(debug=True) |
|
|