import pandas as pd import json import gradio as gr from pathlib import Path from ragatouille import RAGPretrainedModel from gradio_client import Client from tempfile import NamedTemporaryFile from sentence_transformers import CrossEncoder import numpy as np from time import perf_counter import logging # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Constants VECTOR_COLUMN_NAME = "vector" TEXT_COLUMN_NAME = "text" QUIZ_QUESTIONS = 10 proj_dir = Path.cwd() client = Client("Qwen/Qwen1.5-110B-Chat-demo") # Import external retrieval functions from backend.semantic_search import table, retriever # RAG Database for ColBERT retrieval RAG_db = gr.State() quiz_data = None def system_instructions(question_difficulty, topic, documents_str): return f""" [INST] You are a great teacher and your task is to create {QUIZ_QUESTIONS} questions with 4 choices each, with {question_difficulty} difficulty about the topic "{topic}" only from the given documents: {documents_str}. Provide output in JSON format as follows: "Q#":"", "Q#:C1":"", "Q#:C2":"", "Q#:C3":"", "Q#:C4":"", "A#":"Q#:C#" Example: {{ "A10":"Q10:C3" }} [/INST]""" def json_to_excel(output_json): data = [] for i in range(1, QUIZ_QUESTIONS + 1): question_key, answer_key = f"Q{i}", f"A{i}" question = output_json.get(question_key, '') correct_answer_key = output_json.get(answer_key, '') correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else '' options = [output_json.get(f"{question_key}:C{j}", '') for j in range(1, 5)] data.append([question, "Multiple Choice", *options, correct_answer, 30, '']) df = pd.DataFrame(data, columns=["Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Correct Answer", "Time in seconds", "Image Link"]) temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx") df.to_excel(temp_file.name, index=False) return temp_file.name def retrieve_documents(topic, cross_encoder): top_k_rank = 10 documents = [] if cross_encoder == '(HIGH ACCURATE) ColBERT': RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') documents_full = RAG_db.value.search(topic, k=top_k_rank) documents = [item['content'] for item in documents_full] else: query_vec = retriever.encode(topic) doc_results = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list() documents = [doc[TEXT_COLUMN_NAME] for doc in doc_results] if cross_encoder == '(ACCURATE) BGE reranker': model = CrossEncoder('BAAI/bge-reranker-base') scores = model.predict([[topic, doc] for doc in documents]) documents = [documents[idx] for idx in np.argsort(scores)[::-1][:top_k_rank]] return documents def generate_quiz(question_difficulty, topic, cross_encoder): documents = retrieve_documents(topic, cross_encoder) formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents)) try: response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")[1][0][1] output_json = json.loads(response[response.find('{'):response.rfind('}') + 1]) global quiz_data quiz_data = output_json return ['Quiz Generated!'] + [gr.Radio(choices=[output_json.get(f"Q{i}:C{j}", "") for j in range(1, 5)], label=output_json.get(f"Q{i}"), visible=True) for i in range(1, QUIZ_QUESTIONS + 1)] + [json_to_excel(output_json)] except json.JSONDecodeError as e: logger.error(f"Failed to decode JSON: {e}") return ["Error generating quiz"] def compare_answers(*user_answers): score = sum(1 for i, answer in enumerate(user_answers) if answer == quiz_data.get(quiz_data.get(f"A{i+1}"), "")) return f"### {'Excellent!' if score > 7 else 'Good!' if score > 5 else 'Keep Trying!'} You got {score} out of {QUIZ_QUESTIONS}!" colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple") with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT: with gr.Row(): with gr.Column(scale=2): gr.Image(value='logo.png', height=200, width=200) with gr.Column(scale=6): gr.HTML("""

GOVERNMENT HIGH SCHOOL, SUTHUKENY STUDENTS QUIZBOT

Generative AI-powered Capacity building for STUDENTS

⚠️ STUDENTS CAN CREATE QUIZ AND EVALUATE BY THEMSELVES! ⚠️
""") topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic from Class 10 CBSE") difficulty_radio = gr.Radio(["easy", "average", "hard"], label="Select Quiz Difficulty") model_radio = gr.Radio(["(ACCURATE) BGE reranker", "(HIGH ACCURATE) ColBERT"], value="(ACCURATE) BGE reranker", label="Embeddings Model") generate_quiz_btn = gr.Button("Generate Quiz! 🚀") quiz_msg = gr.Textbox() question_radios = [gr.Radio(visible=False) for _ in range(QUIZ_QUESTIONS)] generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")], fn=generate_quiz) check_button = gr.Button("Check Score") score_textbox = gr.Markdown() check_button.click(inputs=question_radios, outputs=score_textbox, fn=compare_answers) QUIZBOT.queue() QUIZBOT.launch(debug=True)