Public_BookBot / app.py
Anne31415's picture
Update app.py
2df9243
raw
history blame
6.06 kB
import os
import pickle
from nltk.tokenize import sent_tokenize
import nltk
from PyPDF2 import PdfReader
import streamlit as st
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
nltk.download('punkt')
# Sidebar contents
with st.sidebar:
st.title(':orange_book: BinDoc GmbH')
# API key input
api_key = st.text_input('Enter your OpenAI API Key:', type='password')
if api_key:
os.environ['OPENAI_API_KEY'] = api_key
else:
st.warning('API key is required to proceed.')
st.markdown("Experience the future of document interaction with the revolutionary")
st.markdown("**BinDocs Chat App**.")
st.markdown("Harnessing the power of a Large Language Model and AI technology,")
st.markdown("this innovative platform redefines PDF engagement,")
st.markdown("enabling dynamic conversations that bridge the gap between")
st.markdown("human and machine intelligence.")
add_vertical_space(3) # Add more vertical space between text blocks
st.write('Made with ❤️ by BinDoc GmbH')
def load_pdf(file_path):
pdf_reader = PdfReader(file_path)
chunks = []
for page in pdf_reader.pages:
text = page.extract_text()
if text:
chunks.append(text)
store_name = file_path.name[:-4]
if os.path.exists(f"{store_name}.pkl"):
with open(f"{store_name}.pkl", "rb") as f:
VectorStore = pickle.load(f)
else:
embeddings = OpenAIEmbeddings()
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
with open(f"{store_name}.pkl", "wb") as f:
pickle.dump(VectorStore, f)
return VectorStore
def load_chatbot(max_tokens=120):
return load_qa_chain(llm=OpenAI(temperature=0.5, max_tokens=max_tokens), chain_type="stuff")
def display_chat_history(chat_history):
for chat in chat_history:
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
def remove_incomplete_sentences(text):
sentences = sent_tokenize(text)
complete_sentences = [sent for sent in sentences if sent.endswith(('.', '!', '?'))]
return ' '.join(complete_sentences)
def remove_redundant_information(text):
sentences = sent_tokenize(text)
unique_sentences = list(set(sentences))
return ' '.join(unique_sentences)
# Define a maximum token limit to avoid infinite loops
MAX_TOKEN_LIMIT = 400
def main():
st.title("BinDocs Chat App")
if "chat_history" not in st.session_state:
st.session_state['chat_history'] = []
display_chat_history(st.session_state['chat_history'])
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
new_messages_placeholder = st.empty()
pdf = st.file_uploader("Upload your PDF", type="pdf")
if pdf is not None:
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
if st.button("Ask") or (query and query != st.session_state.get('last_input', '')):
st.session_state['last_input'] = query
st.session_state['chat_history'].append(("User", query, "new"))
loading_message = st.empty()
loading_message.text('Bot is thinking...')
VectorStore = load_pdf(pdf)
max_tokens = 100
chain = load_chatbot(max_tokens=max_tokens)
docs = VectorStore.similarity_search(query=query, k=2)
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=query)
# Post-processing to remove incomplete sentences and redundant information
filtered_response = remove_incomplete_sentences(response)
filtered_response = remove_redundant_information(filtered_response)
# Check if the response ends with a sentence-ending punctuation
while not filtered_response.strip().endswith(('.', '!', '?')) and max_tokens < MAX_TOKEN_LIMIT:
max_tokens += 50 # Increase the max_tokens limit
chain = load_chatbot(max_tokens=max_tokens)
additional_response = chain.run(input_documents=docs, question=query)
filtered_response += additional_response # Append the additional response to the filtered_response
st.session_state['chat_history'].append(("Bot", filtered_response, "new"))
# Display new messages at the bottom
new_messages = st.session_state['chat_history'][-2:]
for chat in new_messages:
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
# Scroll to the latest response using JavaScript
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)
loading_message.empty()
# Clear the input field by setting the query variable to an empty string
query = ""
# Mark all messages as old after displaying
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
if __name__ == "__main__":
main()