File size: 6,061 Bytes
2df9243
7c95914
2df9243
 
7c95914
2df9243
7c95914
 
 
 
 
 
 
2df9243
 
7c95914
 
 
abd1f1b
 
2df9243
a98948f
 
 
 
 
 
 
2df9243
7c95914
 
 
 
 
 
 
f8dc8d1
a98948f
403a475
7c95914
f7d3ba1
7c95914
f7d3ba1
 
 
 
cab37f8
2df9243
7c95914
 
 
 
2df9243
7c95914
 
 
 
f9dbffb
7c95914
ffab811
 
c239258
9ca7d21
 
 
 
 
2df9243
 
 
 
 
 
 
 
 
 
 
 
 
7c95914
 
 
 
 
 
 
 
 
 
 
a98948f
9ca7d21
 
eb1ac12
 
 
bcd8992
7c95914
bcd8992
2df9243
bcd8992
586a969
bcd8992
 
 
 
2df9243
ffab811
2df9243
 
bcd8992
 
ffab811
2df9243
 
 
 
 
15fb41d
ffab811
 
 
2df9243
15fb41d
 
 
abd1f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c95914
9ca7d21
2df9243
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import pickle
from nltk.tokenize import sent_tokenize
import nltk
from PyPDF2 import PdfReader
import streamlit as st
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback

nltk.download('punkt')

# Sidebar contents
with st.sidebar:
    st.title(':orange_book: BinDoc GmbH')
    
    # API key input
    api_key = st.text_input('Enter your OpenAI API Key:', type='password')
    
    if api_key:
        os.environ['OPENAI_API_KEY'] = api_key
    else:
        st.warning('API key is required to proceed.')

    st.markdown("Experience the future of document interaction with the revolutionary")
    st.markdown("**BinDocs Chat App**.")
    st.markdown("Harnessing the power of a Large Language Model and AI technology,")
    st.markdown("this innovative platform redefines PDF engagement,")
    st.markdown("enabling dynamic conversations that bridge the gap between")
    st.markdown("human and machine intelligence.")

    add_vertical_space(3)  # Add more vertical space between text blocks
    st.write('Made with ❤️ by BinDoc GmbH')

def load_pdf(file_path):
    pdf_reader = PdfReader(file_path)
    chunks = []
    for page in pdf_reader.pages:
        text = page.extract_text()
        if text:
            chunks.append(text)
    
    store_name = file_path.name[:-4]
    
    if os.path.exists(f"{store_name}.pkl"):
        with open(f"{store_name}.pkl", "rb") as f:
            VectorStore = pickle.load(f)
    else:
        embeddings = OpenAIEmbeddings()
        VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
        with open(f"{store_name}.pkl", "wb") as f:
            pickle.dump(VectorStore, f)

    return VectorStore

def load_chatbot(max_tokens=120):
    return load_qa_chain(llm=OpenAI(temperature=0.5, max_tokens=max_tokens), chain_type="stuff") 

def display_chat_history(chat_history):
    for chat in chat_history:
        background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
        st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)

def remove_incomplete_sentences(text):
    sentences = sent_tokenize(text)
    complete_sentences = [sent for sent in sentences if sent.endswith(('.', '!', '?'))]
    return ' '.join(complete_sentences)

def remove_redundant_information(text):
    sentences = sent_tokenize(text)
    unique_sentences = list(set(sentences))
    return ' '.join(unique_sentences)

# Define a maximum token limit to avoid infinite loops
MAX_TOKEN_LIMIT = 400

def main():
    st.title("BinDocs Chat App")

    if "chat_history" not in st.session_state:
        st.session_state['chat_history'] = []

    display_chat_history(st.session_state['chat_history'])

    st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
    st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
    st.write("<!-- End Spacer -->", unsafe_allow_html=True)

    new_messages_placeholder = st.empty()

    pdf = st.file_uploader("Upload your PDF", type="pdf")

    if pdf is not None:
        query = st.text_input("Ask questions about your PDF file (in any preferred language):")

        if st.button("Ask") or (query and query != st.session_state.get('last_input', '')):
            st.session_state['last_input'] = query
            st.session_state['chat_history'].append(("User", query, "new"))

            loading_message = st.empty()
            loading_message.text('Bot is thinking...')
            
            VectorStore = load_pdf(pdf)
            max_tokens = 100
            chain = load_chatbot(max_tokens=max_tokens)
            docs = VectorStore.similarity_search(query=query, k=2)
            
            with get_openai_callback() as cb:
                response = chain.run(input_documents=docs, question=query)
            
            # Post-processing to remove incomplete sentences and redundant information
            filtered_response = remove_incomplete_sentences(response)
            filtered_response = remove_redundant_information(filtered_response)
            
            # Check if the response ends with a sentence-ending punctuation
            while not filtered_response.strip().endswith(('.', '!', '?')) and max_tokens < MAX_TOKEN_LIMIT:
                max_tokens += 50  # Increase the max_tokens limit
                chain = load_chatbot(max_tokens=max_tokens)
                additional_response = chain.run(input_documents=docs, question=query)
                filtered_response += additional_response  # Append the additional response to the filtered_response

            st.session_state['chat_history'].append(("Bot", filtered_response, "new"))

            # Display new messages at the bottom
            new_messages = st.session_state['chat_history'][-2:]
            for chat in new_messages:
                background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
                new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)

            # Scroll to the latest response using JavaScript
            st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)

            loading_message.empty()

            # Clear the input field by setting the query variable to an empty string
            query = ""

        # Mark all messages as old after displaying
        st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]

if __name__ == "__main__":
    main()