Anne31415 commited on
Commit
cab37f8
·
1 Parent(s): 631d47d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -38
app.py CHANGED
@@ -20,17 +20,22 @@ with st.sidebar:
20
 
21
  st.markdown("**BinDocs Chat App**.")
22
 
 
23
  st.markdown("Harnessing the power of a Large Language Model and AI technology,")
 
 
 
24
  st.markdown("this innovative platform redefines PDF engagement,")
25
 
26
  st.markdown("enabling dynamic conversations that bridge the gap between")
27
  st.markdown("human and machine intelligence.")
28
 
 
 
29
  add_vertical_space(3) # Add more vertical space between text blocks
30
  st.write('Made with ❤️ by Anne')
31
 
32
- openai_api_key = st.text_input("Enter your OpenAI API key:")
33
- pdf_path = None # Initialize pdf_path as None
34
 
35
  def load_pdf(file_path):
36
  pdf_reader = PdfReader(file_path)
@@ -45,7 +50,7 @@ def load_pdf(file_path):
45
  )
46
  chunks = text_splitter.split_text(text=text)
47
 
48
- store_name, _ = os.path.splitext(os.path.basename(file_path))
49
 
50
  if os.path.exists(f"{store_name}.pkl"):
51
  with open(f"{store_name}.pkl", "rb") as f:
@@ -58,71 +63,58 @@ def load_pdf(file_path):
58
 
59
  return VectorStore
60
 
61
-
62
- def load_chatbot(openai_api_key):
63
- openai_config = {
64
- "api_key": openai_api_key
65
- }
66
- return load_qa_chain(llm=OpenAI(config=openai_config), chain_type="stuff")
67
-
68
 
69
  def main():
70
  st.title("BinDocs Chat App")
71
 
72
-
73
- uploaded_pdf = st.file_uploader("Upload a PDF file:", type=["pdf"])
74
-
75
- if uploaded_pdf is not None:
76
- pdf_path = uploaded_pdf
77
-
78
 
79
  if "chat_history" not in st.session_state:
80
  st.session_state['chat_history'] = []
81
 
 
 
 
 
 
 
82
  display_chat_history(st.session_state['chat_history'])
83
 
84
  st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
85
  st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
86
  st.write("<!-- End Spacer -->", unsafe_allow_html=True)
87
 
88
- new_messages_placeholder = st.empty()
 
89
 
90
- if pdf_path is not None:
91
- query = st.text_input("Ask questions about your PDF file (in any preferred language):")
92
 
93
- if st.button("Ask") or (not st.session_state['chat_history'] and query) or (st.session_state['chat_history'] and query != st.session_state['chat_history'][-1][1]):
94
- st.session_state['chat_history'].append(("User", query, "new"))
 
95
 
96
  loading_message = st.empty()
97
  loading_message.text('Bot is thinking...')
98
 
99
- VectorStore = load_pdf(pdf_path)
100
  chain = load_chatbot()
101
- docs = VectorStore.similarity_search(query=query, k=3)
102
  with get_openai_callback() as cb:
103
- response = chain.run(input_documents=docs, question=query)
104
-
105
- st.session_state['chat_history'].append(("Bot", response, "new"))
106
 
107
- # Display new messages at the bottom
108
- new_messages = st.session_state['chat_history'][-2:]
109
- for chat in new_messages:
110
- background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
111
- new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
112
-
113
- # Scroll to the latest response using JavaScript
114
  st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)
115
 
116
  loading_message.empty()
117
 
118
- # Clear the input field by setting the query variable to an empty string
119
- query = ""
120
-
121
  # Mark all messages as old after displaying
122
  st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
123
 
124
 
125
-
126
  def display_chat_history(chat_history):
127
  for chat in chat_history:
128
  background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
@@ -130,4 +122,3 @@ def display_chat_history(chat_history):
130
 
131
  if __name__ == "__main__":
132
  main()
133
-
 
20
 
21
  st.markdown("**BinDocs Chat App**.")
22
 
23
+
24
  st.markdown("Harnessing the power of a Large Language Model and AI technology,")
25
+
26
+
27
+
28
  st.markdown("this innovative platform redefines PDF engagement,")
29
 
30
  st.markdown("enabling dynamic conversations that bridge the gap between")
31
  st.markdown("human and machine intelligence.")
32
 
33
+
34
+
35
  add_vertical_space(3) # Add more vertical space between text blocks
36
  st.write('Made with ❤️ by Anne')
37
 
38
+ load_dotenv()
 
39
 
40
  def load_pdf(file_path):
41
  pdf_reader = PdfReader(file_path)
 
50
  )
51
  chunks = text_splitter.split_text(text=text)
52
 
53
+ store_name = file_path.name[:-4]
54
 
55
  if os.path.exists(f"{store_name}.pkl"):
56
  with open(f"{store_name}.pkl", "rb") as f:
 
63
 
64
  return VectorStore
65
 
66
+ def load_chatbot():
67
+ return load_qa_chain(llm=OpenAI(), chain_type="stuff")
 
 
 
 
 
68
 
69
  def main():
70
  st.title("BinDocs Chat App")
71
 
72
+ pdf = st.file_uploader("Upload your PDF", type="pdf")
 
 
 
 
 
73
 
74
  if "chat_history" not in st.session_state:
75
  st.session_state['chat_history'] = []
76
 
77
+ if "current_input" not in st.session_state:
78
+ st.session_state['current_input'] = ""
79
+
80
+ if "processing_input" not in st.session_state:
81
+ st.session_state['processing_input'] = ""
82
+
83
  display_chat_history(st.session_state['chat_history'])
84
 
85
  st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
86
  st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
87
  st.write("<!-- End Spacer -->", unsafe_allow_html=True)
88
 
89
+ if pdf is not None:
90
+ query = st.text_input("Ask questions about your PDF file (in any preferred language):", value=st.session_state['current_input'])
91
 
92
+ if query != st.session_state['current_input']:
93
+ st.session_state['current_input'] = query
94
 
95
+ if st.button("Ask"):
96
+ st.session_state['processing_input'] = st.session_state['current_input']
97
+ st.session_state['chat_history'].append(("User", st.session_state['processing_input'], "new"))
98
 
99
  loading_message = st.empty()
100
  loading_message.text('Bot is thinking...')
101
 
102
+ VectorStore = load_pdf(pdf)
103
  chain = load_chatbot()
104
+ docs = VectorStore.similarity_search(query=st.session_state['processing_input'], k=3)
105
  with get_openai_callback() as cb:
106
+ response = chain.run(input_documents=docs, question=st.session_state['processing_input'])
 
 
107
 
108
+ # Display the bot's response immediately using JavaScript
109
+ st.write(f"<div id='response' style='background-color: #caf; padding: 10px; border-radius: 10px; margin: 10px;'>Bot: {response}</div>", unsafe_allow_html=True)
 
 
 
 
 
110
  st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)
111
 
112
  loading_message.empty()
113
 
 
 
 
114
  # Mark all messages as old after displaying
115
  st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
116
 
117
 
 
118
  def display_chat_history(chat_history):
119
  for chat in chat_history:
120
  background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
 
122
 
123
  if __name__ == "__main__":
124
  main()