File size: 4,503 Bytes
7c95914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cab37f8
7c95914
cab37f8
 
 
7c95914
 
 
 
 
cab37f8
 
7c95914
 
 
cab37f8
7c95914
 
 
 
 
 
 
 
 
 
 
 
 
 
cab37f8
7c95914
 
 
 
 
 
 
 
 
 
 
 
cab37f8
 
7c95914
 
 
 
cab37f8
7c95914
 
 
 
cab37f8
 
 
 
 
 
7c95914
 
 
 
 
 
cab37f8
 
7c95914
cab37f8
 
7c95914
cab37f8
 
 
7c95914
 
 
 
cab37f8
7c95914
cab37f8
7c95914
cab37f8
7c95914
cab37f8
 
7c95914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import streamlit as st
from dotenv import load_dotenv
import pickle
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os

# Sidebar contents
with st.sidebar:
    st.title(':orange[BinDoc GmbH]')
    st.markdown(
        "Experience the future of document interaction with the revolutionary"
    )

    st.markdown("**BinDocs Chat App**.")

        
    st.markdown("Harnessing the power of a Large Language Model and AI technology,")
       


    st.markdown("this innovative platform redefines PDF engagement,")

    st.markdown("enabling dynamic conversations that bridge the gap between")
    st.markdown("human and machine intelligence.")

    
    
    add_vertical_space(3)  # Add more vertical space between text blocks
    st.write('Made with ❤️ by Anne')

load_dotenv()

def load_pdf(file_path):
    pdf_reader = PdfReader(file_path)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text()

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text=text)

    store_name = file_path.name[:-4]

    if os.path.exists(f"{store_name}.pkl"):
        with open(f"{store_name}.pkl", "rb") as f:
            VectorStore = pickle.load(f)
    else:
        embeddings = OpenAIEmbeddings()
        VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
        with open(f"{store_name}.pkl", "wb") as f:
            pickle.dump(VectorStore, f)

    return VectorStore

def load_chatbot():
    return load_qa_chain(llm=OpenAI(), chain_type="stuff")

def main():
    st.title("BinDocs Chat App")

    pdf = st.file_uploader("Upload your PDF", type="pdf")

    if "chat_history" not in st.session_state:
        st.session_state['chat_history'] = []

    if "current_input" not in st.session_state:
        st.session_state['current_input'] = ""

    if "processing_input" not in st.session_state:
        st.session_state['processing_input'] = ""

    display_chat_history(st.session_state['chat_history'])

    st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
    st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
    st.write("<!-- End Spacer -->", unsafe_allow_html=True)

    if pdf is not None:
        query = st.text_input("Ask questions about your PDF file (in any preferred language):", value=st.session_state['current_input'])

        if query != st.session_state['current_input']:
            st.session_state['current_input'] = query

        if st.button("Ask"):
            st.session_state['processing_input'] = st.session_state['current_input']
            st.session_state['chat_history'].append(("User", st.session_state['processing_input'], "new"))

            loading_message = st.empty()
            loading_message.text('Bot is thinking...')

            VectorStore = load_pdf(pdf)
            chain = load_chatbot()
            docs = VectorStore.similarity_search(query=st.session_state['processing_input'], k=3)
            with get_openai_callback() as cb:
                response = chain.run(input_documents=docs, question=st.session_state['processing_input'])

            # Display the bot's response immediately using JavaScript
            st.write(f"<div id='response' style='background-color: #caf; padding: 10px; border-radius: 10px; margin: 10px;'>Bot: {response}</div>", unsafe_allow_html=True)
            st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)

            loading_message.empty()

        # Mark all messages as old after displaying
        st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]


def display_chat_history(chat_history):
    for chat in chat_history:
        background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
        st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)

if __name__ == "__main__":
    main()