Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from lida import Manager, TextGenerationConfig , llm | |
| from dotenv import load_dotenv | |
| import os | |
| import openai | |
| from PIL import Image | |
| from io import BytesIO | |
| import base64 | |
| load_dotenv() | |
| openai.api_key = os.getenv('OPENAI_API_KEY') | |
| def base64_to_image(base64_string): | |
| # Decode the base64 string | |
| byte_data = base64.b64decode(base64_string) | |
| # Use BytesIO to convert the byte data to image | |
| return Image.open(BytesIO(byte_data)) | |
| lida = Manager(text_gen = llm("openai")) | |
| textgen_config = TextGenerationConfig(n=1, temperature=0.5, model="gpt-3.5-turbo-0301", use_cache=True) | |
| menu = st.sidebar.selectbox("Choose an Option", ["Summarize", "Question based Graph"]) | |
| if menu == "Summarize": | |
| st.subheader("Summarization of your Data") | |
| file_uploader = st.file_uploader("Upload your CSV", type="csv") | |
| if file_uploader is not None: | |
| path_to_save = "filename.csv" | |
| with open(path_to_save, "wb") as f: | |
| f.write(file_uploader.getvalue()) | |
| summary = lida.summarize("filename.csv", summary_method="default", textgen_config=textgen_config) | |
| st.write(summary) | |
| goals = lida.goals(summary, n=2, textgen_config=textgen_config) | |
| for goal in goals: | |
| st.write(goal) | |
| i = 0 | |
| library = "seaborn" | |
| textgen_config = TextGenerationConfig(n=1, temperature=0.2, use_cache=True) | |
| charts = lida.visualize(summary=summary, goal=goals[i], textgen_config=textgen_config, library=library) | |
| img_base64_string = charts[0].raster | |
| img = base64_to_image(img_base64_string) | |
| st.image(img) | |
| elif menu == "Question based Graph": | |
| st.subheader("Query your Data to Generate Graph") | |
| file_uploader = st.file_uploader("Upload your CSV", type="csv") | |
| if file_uploader is not None: | |
| path_to_save = "filename1.csv" | |
| with open(path_to_save, "wb") as f: | |
| f.write(file_uploader.getvalue()) | |
| text_area = st.text_area("Query your Data to Generate Graph", height=200) | |
| if st.button("Generate Graph"): | |
| if len(text_area) > 0: | |
| st.info("Your Query: " + text_area) | |
| lida = Manager(text_gen = llm("openai")) | |
| textgen_config = TextGenerationConfig(n=1, temperature=0.2, use_cache=True) | |
| summary = lida.summarize("filename1.csv", summary_method="default", textgen_config=textgen_config) | |
| user_query = text_area | |
| charts = lida.visualize(summary=summary, goal=user_query, textgen_config=textgen_config) | |
| charts[0] | |
| image_base64 = charts[0].raster | |
| img = base64_to_image(image_base64) | |
| st.image(img) | |