Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,383 +1,69 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from
|
| 3 |
-
import random
|
| 4 |
-
import time
|
| 5 |
-
import streamlit_analytics
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
-
import pickle
|
| 8 |
-
from huggingface_hub import Repository
|
| 9 |
-
from PyPDF2 import PdfReader
|
| 10 |
-
from streamlit_extras.add_vertical_space import add_vertical_space
|
| 11 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 12 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 13 |
-
from langchain.vectorstores import FAISS
|
| 14 |
-
from langchain.llms import OpenAI
|
| 15 |
-
from langchain.chains.question_answering import load_qa_chain
|
| 16 |
-
from langchain.callbacks import get_openai_callback
|
| 17 |
import os
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
if force_reload or not os.path.exists(f"{store_name}.pkl"):
|
| 59 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 60 |
-
chunk_size=1000,
|
| 61 |
-
chunk_overlap=200,
|
| 62 |
-
length_function=len
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
text = load_pdf_text(file_path)
|
| 66 |
-
chunks = text_splitter.split_text(text=text)
|
| 67 |
-
|
| 68 |
-
embeddings = OpenAIEmbeddings()
|
| 69 |
-
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
| 70 |
-
VectorStore.save_local("faiss_store")
|
| 71 |
-
FAISS.load_local("faiss_store", OpenAIEmbeddings())
|
| 72 |
-
with open(f"{store_name}.pkl", "wb") as f:
|
| 73 |
-
pickle.dump(VectorStore, f)
|
| 74 |
-
else:
|
| 75 |
-
with open(f"{store_name}.pkl", "rb") as f:
|
| 76 |
-
VectorStore = pickle.load(f)
|
| 77 |
-
|
| 78 |
-
return VectorStore
|
| 79 |
-
|
| 80 |
-
# Utility function to load text from a PDF
|
| 81 |
-
def load_pdf_text(file_path):
|
| 82 |
-
pdf_reader = PdfReader(file_path)
|
| 83 |
-
text = ""
|
| 84 |
-
for page in pdf_reader.pages:
|
| 85 |
-
text += page.extract_text() or "" # Add fallback for pages where text extraction fails
|
| 86 |
-
return text
|
| 87 |
-
|
| 88 |
-
def load_chatbot():
|
| 89 |
-
#return load_qa_chain(llm=OpenAI(), chain_type="stuff")
|
| 90 |
-
return load_qa_chain(llm=OpenAI(model_name="gpt-3.5-turbo-instruct"), chain_type="stuff")
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
def display_chat_history(chat_history):
|
| 94 |
-
for chat in chat_history:
|
| 95 |
-
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
| 96 |
-
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def handle_no_answer(response):
|
| 100 |
-
no_answer_phrases = [
|
| 101 |
-
"ich weiß es nicht",
|
| 102 |
-
"ich weiß nicht",
|
| 103 |
-
"ich bin mir nicht sicher",
|
| 104 |
-
"es wird nicht erwähnt",
|
| 105 |
-
"Leider kann ich diese Frage nicht beantworten",
|
| 106 |
-
"kann ich diese Frage nicht beantworten",
|
| 107 |
-
"ich kann diese Frage nicht beantworten",
|
| 108 |
-
"ich kann diese Frage leider nicht beantworten",
|
| 109 |
-
"keine information",
|
| 110 |
-
"das ist unklar",
|
| 111 |
-
"da habe ich keine antwort",
|
| 112 |
-
"das kann ich nicht beantworten",
|
| 113 |
-
"i don't know",
|
| 114 |
-
"i am not sure",
|
| 115 |
-
"it is not mentioned",
|
| 116 |
-
"no information",
|
| 117 |
-
"that is unclear",
|
| 118 |
-
"i have no answer",
|
| 119 |
-
"i cannot answer that",
|
| 120 |
-
"unable to provide an answer",
|
| 121 |
-
"not enough context",
|
| 122 |
-
]
|
| 123 |
-
|
| 124 |
-
alternative_responses = [
|
| 125 |
-
"Hmm, das ist eine knifflige Frage. Lass uns das gemeinsam erkunden. Kannst du mehr Details geben?",
|
| 126 |
-
"Interessante Frage! Ich bin mir nicht sicher, aber wir können es herausfinden. Hast du weitere Informationen?",
|
| 127 |
-
"Das ist eine gute Frage. Ich habe momentan keine Antwort darauf, aber vielleicht kannst du sie anders formulieren?",
|
| 128 |
-
"Da bin ich überfragt. Kannst du die Frage anders stellen oder mir mehr Kontext geben?",
|
| 129 |
-
"Ich stehe hier etwas auf dem Schlauch. Gibt es noch andere Aspekte der Frage, die wir betrachten könnten?",
|
| 130 |
-
# Add more alternative responses as needed
|
| 131 |
-
]
|
| 132 |
-
|
| 133 |
-
# Check if response matches any phrase in no_answer_phrases
|
| 134 |
-
if any(phrase in response.lower() for phrase in no_answer_phrases):
|
| 135 |
-
return random.choice(alternative_responses) # Randomly select a response
|
| 136 |
-
return response
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
def page1():
|
| 142 |
-
try:
|
| 143 |
-
hide_streamlit_style = """
|
| 144 |
-
<style>
|
| 145 |
-
#MainMenu {visibility: hidden;}
|
| 146 |
-
footer {visibility: hidden;}
|
| 147 |
-
</style>
|
| 148 |
-
"""
|
| 149 |
-
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
| 150 |
-
|
| 151 |
-
# Create columns for layout
|
| 152 |
-
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking
|
| 153 |
-
|
| 154 |
-
with col1:
|
| 155 |
-
st.title("Welcome to BinDocs AI!")
|
| 156 |
-
|
| 157 |
-
with col2:
|
| 158 |
-
# Load and display the image in the right column, which will be the top-right corner of the page
|
| 159 |
-
image = Image.open('BinDoc Logo (Quadratisch).png')
|
| 160 |
-
st.image(image, use_column_width='always')
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
# Start tracking user interactions
|
| 164 |
-
with streamlit_analytics.track():
|
| 165 |
-
if not os.path.exists(pdf_path):
|
| 166 |
-
st.error("File not found. Please check the file path.")
|
| 167 |
-
return
|
| 168 |
-
|
| 169 |
-
VectorStore = load_vector_store(pdf_path, "vector_store_page1", force_reload=False)
|
| 170 |
-
|
| 171 |
-
display_chat_history(st.session_state['chat_history_page1'])
|
| 172 |
-
|
| 173 |
-
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
| 174 |
-
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
| 175 |
-
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
|
| 176 |
-
|
| 177 |
-
new_messages_placeholder = st.empty()
|
| 178 |
-
|
| 179 |
-
query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:")
|
| 180 |
-
|
| 181 |
-
add_vertical_space(2) # Adjust as per the desired spacing
|
| 182 |
-
|
| 183 |
-
# Create two columns for the buttons
|
| 184 |
-
col1, col2 = st.columns(2)
|
| 185 |
-
|
| 186 |
-
with col1:
|
| 187 |
-
if st.button("Was kann ich mit dem Prognose-Analyse-Tool machen?"):
|
| 188 |
-
query = "Was kann ich mit dem Prognose-Analyse-Tool machen?"
|
| 189 |
-
if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"):
|
| 190 |
-
query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"
|
| 191 |
-
if st.button("Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"):
|
| 192 |
-
query = "Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
with col2:
|
| 196 |
-
if st.button("Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."):
|
| 197 |
-
query = "Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."
|
| 198 |
-
if st.button("Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"):
|
| 199 |
-
query = "Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"
|
| 200 |
-
if st.button("Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"):
|
| 201 |
-
query = "Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"
|
| 202 |
-
|
| 203 |
|
| 204 |
-
if query:
|
| 205 |
-
st.session_state['chat_history_page1'].append(("User", query, "new"))
|
| 206 |
-
|
| 207 |
-
# Start timing
|
| 208 |
-
start_time = time.time()
|
| 209 |
-
|
| 210 |
-
with st.spinner('Bot is thinking...'):
|
| 211 |
-
chain = load_chatbot()
|
| 212 |
-
docs = VectorStore.similarity_search(query=query, k=3)
|
| 213 |
-
with get_openai_callback() as cb:
|
| 214 |
-
response = chain.run(input_documents=docs, question=query)
|
| 215 |
-
response = handle_no_answer(response) # Process the response through the new function
|
| 216 |
|
| 217 |
|
| 218 |
-
|
| 219 |
-
# Stop timing
|
| 220 |
-
end_time = time.time()
|
| 221 |
-
|
| 222 |
-
# Calculate duration
|
| 223 |
-
duration = end_time - start_time
|
| 224 |
-
|
| 225 |
-
# You can use Streamlit's text function to display the timing
|
| 226 |
-
st.text(f"Response time: {duration:.2f} seconds")
|
| 227 |
-
|
| 228 |
-
st.session_state['chat_history_page1'].append(("Bot", response, "new"))
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
# Display new messages at the bottom
|
| 232 |
-
new_messages = st.session_state['chat_history_page1'][-2:]
|
| 233 |
-
for chat in new_messages:
|
| 234 |
-
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
| 235 |
-
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
# Clear the input field after the query is made
|
| 239 |
-
query = ""
|
| 240 |
-
|
| 241 |
-
# Mark all messages as old after displaying
|
| 242 |
-
st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']]
|
| 243 |
-
|
| 244 |
-
except Exception as e:
|
| 245 |
-
st.error(f"Upsi, an unexpected error occurred: {e}")
|
| 246 |
-
# Optionally log the exception details to a file or error tracking service
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
def page2():
|
| 252 |
-
try:
|
| 253 |
-
hide_streamlit_style = """
|
| 254 |
-
<style>
|
| 255 |
-
#MainMenu {visibility: hidden;}
|
| 256 |
-
footer {visibility: hidden;}
|
| 257 |
-
</style>
|
| 258 |
-
"""
|
| 259 |
-
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
| 260 |
-
|
| 261 |
-
# Create columns for layout
|
| 262 |
-
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking
|
| 263 |
-
|
| 264 |
-
with col1:
|
| 265 |
-
st.title("Kodieren statt Frustrieren!")
|
| 266 |
-
|
| 267 |
-
with col2:
|
| 268 |
-
# Load and display the image in the right column, which will be the top-right corner of the page
|
| 269 |
-
image = Image.open('BinDoc Logo (Quadratisch).png')
|
| 270 |
-
st.image(image, use_column_width='always')
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
# Start tracking user interactions
|
| 274 |
-
with streamlit_analytics.track():
|
| 275 |
-
|
| 276 |
-
if not os.path.exists(pdf_path2):
|
| 277 |
-
st.error("File not found. Please check the file path.")
|
| 278 |
-
return
|
| 279 |
-
|
| 280 |
-
VectorStore = load_vector_store(pdf_path2, "vector_store_page2", force_reload=False)
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
display_chat_history(st.session_state['chat_history_page2'])
|
| 285 |
-
|
| 286 |
-
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
| 287 |
-
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
| 288 |
-
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
|
| 289 |
-
|
| 290 |
-
new_messages_placeholder = st.empty()
|
| 291 |
-
|
| 292 |
-
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
|
| 293 |
-
|
| 294 |
-
add_vertical_space(2) # Adjust as per the desired spacing
|
| 295 |
-
|
| 296 |
-
# Create two columns for the buttons
|
| 297 |
-
col1, col2 = st.columns(2)
|
| 298 |
-
|
| 299 |
-
with col1:
|
| 300 |
-
if st.button("Wann kodiere ich etwas als Hauptdiagnose und wann als Nebendiagnose?"):
|
| 301 |
-
query = "Wann kodiere ich etwas als Hauptdiagnose und wann als Nebendiagnose?"
|
| 302 |
-
if st.button("Ein Patient wird mit Aszites bei bekannter Leberzirrhose stationär aufgenommen. Es wird nur der Aszites durch eine Punktion behandelt.Wie kodiere ich das?"):
|
| 303 |
-
query = ("Ein Patient wird mit Aszites bei bekannter Leberzirrhose stationär aufgenommen. Es wird nur der Aszites durch eine Punktion behandelt.Wie kodiere ich das?")
|
| 304 |
-
if st.button("Hauptdiagnose: Hirntumor wie kodiere ich das?"):
|
| 305 |
-
query = "Hauptdiagnose: Hirntumor wie kodiere ich das?"
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
with col2:
|
| 309 |
-
if st.button("Welche Prozeduren werden normalerweise nicht verschlüsselt?"):
|
| 310 |
-
query = "Welche Prozeduren werden normalerweise nicht verschlüsselt?"
|
| 311 |
-
if st.button("Was muss ich bei der Kodierung der Folgezusänden von Krankheiten beachten?"):
|
| 312 |
-
query = "Was muss ich bei der Kodierung der Folgezusänden von Krankheiten beachten?"
|
| 313 |
-
if st.button("Was mache ich bei einer Verdachtsdiagnose, wenn mein Patien nach Hause entlassen wird?"):
|
| 314 |
-
query = "Was mache ich bei einer Verdachtsdiagnose, wenn mein Patien nach Hause entlassen wird?"
|
| 315 |
-
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
# You can use Streamlit's text function to display the timing
|
| 339 |
-
st.text(f"Response time: {duration:.2f} seconds")
|
| 340 |
-
|
| 341 |
-
st.session_state['chat_history_page2'].append(("Bot", response, "new"))
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
# Display new messages at the bottom
|
| 345 |
-
new_messages = st.session_state['chat_history_page2'][-2:]
|
| 346 |
-
for chat in new_messages:
|
| 347 |
-
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
| 348 |
-
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
# Clear the input field after the query is made
|
| 352 |
-
query = ""
|
| 353 |
-
|
| 354 |
-
# Mark all messages as old after displaying
|
| 355 |
-
st.session_state['chat_history_page2'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page2']]
|
| 356 |
-
|
| 357 |
-
except Exception as e:
|
| 358 |
-
st.error(f"Upsi, an unexpected error occurred: {e}")
|
| 359 |
-
# Optionally log the exception details to a file or error tracking service
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
def main():
|
| 366 |
-
# Sidebar content
|
| 367 |
-
with st.sidebar:
|
| 368 |
-
st.title('BinDoc GmbH')
|
| 369 |
-
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
|
| 370 |
-
add_vertical_space(1)
|
| 371 |
-
page = st.sidebar.selectbox("Choose a page", ["Document Analysis Bot", "Coding Assistance Bot"])
|
| 372 |
-
add_vertical_space(1)
|
| 373 |
-
st.write('Made with ❤️ by BinDoc GmbH')
|
| 374 |
-
|
| 375 |
-
# Main area content based on page selection
|
| 376 |
-
if page == "Document Analysis Bot":
|
| 377 |
-
page1()
|
| 378 |
-
elif page == "Coding Assistance Bot":
|
| 379 |
-
page2()
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
if __name__ == "__main__":
|
| 383 |
-
main()
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from lida import Manager, TextGenerationConfig , llm
|
|
|
|
|
|
|
|
|
|
| 3 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import os
|
| 5 |
+
import openai
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
import base64
|
| 9 |
+
|
| 10 |
+
load_dotenv()
|
| 11 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
| 12 |
+
|
| 13 |
+
def base64_to_image(base64_string):
|
| 14 |
+
# Decode the base64 string
|
| 15 |
+
byte_data = base64.b64decode(base64_string)
|
| 16 |
+
|
| 17 |
+
# Use BytesIO to convert the byte data to image
|
| 18 |
+
return Image.open(BytesIO(byte_data))
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
lida = Manager(text_gen = llm("openai"))
|
| 22 |
+
textgen_config = TextGenerationConfig(n=1, temperature=0.5, model="gpt-3.5-turbo-0301", use_cache=True)
|
| 23 |
+
|
| 24 |
+
menu = st.sidebar.selectbox("Choose an Option", ["Summarize", "Question based Graph"])
|
| 25 |
+
|
| 26 |
+
if menu == "Summarize":
|
| 27 |
+
st.subheader("Summarization of your Data")
|
| 28 |
+
file_uploader = st.file_uploader("Upload your CSV", type="csv")
|
| 29 |
+
if file_uploader is not None:
|
| 30 |
+
path_to_save = "filename.csv"
|
| 31 |
+
with open(path_to_save, "wb") as f:
|
| 32 |
+
f.write(file_uploader.getvalue())
|
| 33 |
+
summary = lida.summarize("filename.csv", summary_method="default", textgen_config=textgen_config)
|
| 34 |
+
st.write(summary)
|
| 35 |
+
goals = lida.goals(summary, n=2, textgen_config=textgen_config)
|
| 36 |
+
for goal in goals:
|
| 37 |
+
st.write(goal)
|
| 38 |
+
i = 0
|
| 39 |
+
library = "seaborn"
|
| 40 |
+
textgen_config = TextGenerationConfig(n=1, temperature=0.2, use_cache=True)
|
| 41 |
+
charts = lida.visualize(summary=summary, goal=goals[i], textgen_config=textgen_config, library=library)
|
| 42 |
+
img_base64_string = charts[0].raster
|
| 43 |
+
img = base64_to_image(img_base64_string)
|
| 44 |
+
st.image(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
elif menu == "Question based Graph":
|
| 50 |
+
st.subheader("Query your Data to Generate Graph")
|
| 51 |
+
file_uploader = st.file_uploader("Upload your CSV", type="csv")
|
| 52 |
+
if file_uploader is not None:
|
| 53 |
+
path_to_save = "filename1.csv"
|
| 54 |
+
with open(path_to_save, "wb") as f:
|
| 55 |
+
f.write(file_uploader.getvalue())
|
| 56 |
+
text_area = st.text_area("Query your Data to Generate Graph", height=200)
|
| 57 |
+
if st.button("Generate Graph"):
|
| 58 |
+
if len(text_area) > 0:
|
| 59 |
+
st.info("Your Query: " + text_area)
|
| 60 |
+
lida = Manager(text_gen = llm("openai"))
|
| 61 |
+
textgen_config = TextGenerationConfig(n=1, temperature=0.2, use_cache=True)
|
| 62 |
+
summary = lida.summarize("filename1.csv", summary_method="default", textgen_config=textgen_config)
|
| 63 |
+
user_query = text_area
|
| 64 |
+
charts = lida.visualize(summary=summary, goal=user_query, textgen_config=textgen_config)
|
| 65 |
+
charts[0]
|
| 66 |
+
image_base64 = charts[0].raster
|
| 67 |
+
img = base64_to_image(image_base64)
|
| 68 |
+
st.image(img)
|
| 69 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|