Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,383 +1,69 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from
|
3 |
-
import random
|
4 |
-
import time
|
5 |
-
import streamlit_analytics
|
6 |
from dotenv import load_dotenv
|
7 |
-
import pickle
|
8 |
-
from huggingface_hub import Repository
|
9 |
-
from PyPDF2 import PdfReader
|
10 |
-
from streamlit_extras.add_vertical_space import add_vertical_space
|
11 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
13 |
-
from langchain.vectorstores import FAISS
|
14 |
-
from langchain.llms import OpenAI
|
15 |
-
from langchain.chains.question_answering import load_qa_chain
|
16 |
-
from langchain.callbacks import get_openai_callback
|
17 |
import os
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
if force_reload or not os.path.exists(f"{store_name}.pkl"):
|
59 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
60 |
-
chunk_size=1000,
|
61 |
-
chunk_overlap=200,
|
62 |
-
length_function=len
|
63 |
-
)
|
64 |
-
|
65 |
-
text = load_pdf_text(file_path)
|
66 |
-
chunks = text_splitter.split_text(text=text)
|
67 |
-
|
68 |
-
embeddings = OpenAIEmbeddings()
|
69 |
-
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
70 |
-
VectorStore.save_local("faiss_store")
|
71 |
-
FAISS.load_local("faiss_store", OpenAIEmbeddings())
|
72 |
-
with open(f"{store_name}.pkl", "wb") as f:
|
73 |
-
pickle.dump(VectorStore, f)
|
74 |
-
else:
|
75 |
-
with open(f"{store_name}.pkl", "rb") as f:
|
76 |
-
VectorStore = pickle.load(f)
|
77 |
-
|
78 |
-
return VectorStore
|
79 |
-
|
80 |
-
# Utility function to load text from a PDF
|
81 |
-
def load_pdf_text(file_path):
|
82 |
-
pdf_reader = PdfReader(file_path)
|
83 |
-
text = ""
|
84 |
-
for page in pdf_reader.pages:
|
85 |
-
text += page.extract_text() or "" # Add fallback for pages where text extraction fails
|
86 |
-
return text
|
87 |
-
|
88 |
-
def load_chatbot():
|
89 |
-
#return load_qa_chain(llm=OpenAI(), chain_type="stuff")
|
90 |
-
return load_qa_chain(llm=OpenAI(model_name="gpt-3.5-turbo-instruct"), chain_type="stuff")
|
91 |
-
|
92 |
-
|
93 |
-
def display_chat_history(chat_history):
|
94 |
-
for chat in chat_history:
|
95 |
-
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
96 |
-
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
97 |
-
|
98 |
-
|
99 |
-
def handle_no_answer(response):
|
100 |
-
no_answer_phrases = [
|
101 |
-
"ich weiß es nicht",
|
102 |
-
"ich weiß nicht",
|
103 |
-
"ich bin mir nicht sicher",
|
104 |
-
"es wird nicht erwähnt",
|
105 |
-
"Leider kann ich diese Frage nicht beantworten",
|
106 |
-
"kann ich diese Frage nicht beantworten",
|
107 |
-
"ich kann diese Frage nicht beantworten",
|
108 |
-
"ich kann diese Frage leider nicht beantworten",
|
109 |
-
"keine information",
|
110 |
-
"das ist unklar",
|
111 |
-
"da habe ich keine antwort",
|
112 |
-
"das kann ich nicht beantworten",
|
113 |
-
"i don't know",
|
114 |
-
"i am not sure",
|
115 |
-
"it is not mentioned",
|
116 |
-
"no information",
|
117 |
-
"that is unclear",
|
118 |
-
"i have no answer",
|
119 |
-
"i cannot answer that",
|
120 |
-
"unable to provide an answer",
|
121 |
-
"not enough context",
|
122 |
-
]
|
123 |
-
|
124 |
-
alternative_responses = [
|
125 |
-
"Hmm, das ist eine knifflige Frage. Lass uns das gemeinsam erkunden. Kannst du mehr Details geben?",
|
126 |
-
"Interessante Frage! Ich bin mir nicht sicher, aber wir können es herausfinden. Hast du weitere Informationen?",
|
127 |
-
"Das ist eine gute Frage. Ich habe momentan keine Antwort darauf, aber vielleicht kannst du sie anders formulieren?",
|
128 |
-
"Da bin ich überfragt. Kannst du die Frage anders stellen oder mir mehr Kontext geben?",
|
129 |
-
"Ich stehe hier etwas auf dem Schlauch. Gibt es noch andere Aspekte der Frage, die wir betrachten könnten?",
|
130 |
-
# Add more alternative responses as needed
|
131 |
-
]
|
132 |
-
|
133 |
-
# Check if response matches any phrase in no_answer_phrases
|
134 |
-
if any(phrase in response.lower() for phrase in no_answer_phrases):
|
135 |
-
return random.choice(alternative_responses) # Randomly select a response
|
136 |
-
return response
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
def page1():
|
142 |
-
try:
|
143 |
-
hide_streamlit_style = """
|
144 |
-
<style>
|
145 |
-
#MainMenu {visibility: hidden;}
|
146 |
-
footer {visibility: hidden;}
|
147 |
-
</style>
|
148 |
-
"""
|
149 |
-
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
150 |
-
|
151 |
-
# Create columns for layout
|
152 |
-
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking
|
153 |
-
|
154 |
-
with col1:
|
155 |
-
st.title("Welcome to BinDocs AI!")
|
156 |
-
|
157 |
-
with col2:
|
158 |
-
# Load and display the image in the right column, which will be the top-right corner of the page
|
159 |
-
image = Image.open('BinDoc Logo (Quadratisch).png')
|
160 |
-
st.image(image, use_column_width='always')
|
161 |
-
|
162 |
-
|
163 |
-
# Start tracking user interactions
|
164 |
-
with streamlit_analytics.track():
|
165 |
-
if not os.path.exists(pdf_path):
|
166 |
-
st.error("File not found. Please check the file path.")
|
167 |
-
return
|
168 |
-
|
169 |
-
VectorStore = load_vector_store(pdf_path, "vector_store_page1", force_reload=False)
|
170 |
-
|
171 |
-
display_chat_history(st.session_state['chat_history_page1'])
|
172 |
-
|
173 |
-
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
174 |
-
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
175 |
-
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
|
176 |
-
|
177 |
-
new_messages_placeholder = st.empty()
|
178 |
-
|
179 |
-
query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:")
|
180 |
-
|
181 |
-
add_vertical_space(2) # Adjust as per the desired spacing
|
182 |
-
|
183 |
-
# Create two columns for the buttons
|
184 |
-
col1, col2 = st.columns(2)
|
185 |
-
|
186 |
-
with col1:
|
187 |
-
if st.button("Was kann ich mit dem Prognose-Analyse-Tool machen?"):
|
188 |
-
query = "Was kann ich mit dem Prognose-Analyse-Tool machen?"
|
189 |
-
if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"):
|
190 |
-
query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"
|
191 |
-
if st.button("Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"):
|
192 |
-
query = "Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"
|
193 |
-
|
194 |
-
|
195 |
-
with col2:
|
196 |
-
if st.button("Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."):
|
197 |
-
query = "Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."
|
198 |
-
if st.button("Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"):
|
199 |
-
query = "Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"
|
200 |
-
if st.button("Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"):
|
201 |
-
query = "Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"
|
202 |
-
|
203 |
|
204 |
-
if query:
|
205 |
-
st.session_state['chat_history_page1'].append(("User", query, "new"))
|
206 |
-
|
207 |
-
# Start timing
|
208 |
-
start_time = time.time()
|
209 |
-
|
210 |
-
with st.spinner('Bot is thinking...'):
|
211 |
-
chain = load_chatbot()
|
212 |
-
docs = VectorStore.similarity_search(query=query, k=3)
|
213 |
-
with get_openai_callback() as cb:
|
214 |
-
response = chain.run(input_documents=docs, question=query)
|
215 |
-
response = handle_no_answer(response) # Process the response through the new function
|
216 |
|
217 |
|
218 |
-
|
219 |
-
# Stop timing
|
220 |
-
end_time = time.time()
|
221 |
-
|
222 |
-
# Calculate duration
|
223 |
-
duration = end_time - start_time
|
224 |
-
|
225 |
-
# You can use Streamlit's text function to display the timing
|
226 |
-
st.text(f"Response time: {duration:.2f} seconds")
|
227 |
-
|
228 |
-
st.session_state['chat_history_page1'].append(("Bot", response, "new"))
|
229 |
-
|
230 |
-
|
231 |
-
# Display new messages at the bottom
|
232 |
-
new_messages = st.session_state['chat_history_page1'][-2:]
|
233 |
-
for chat in new_messages:
|
234 |
-
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
235 |
-
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
236 |
-
|
237 |
-
|
238 |
-
# Clear the input field after the query is made
|
239 |
-
query = ""
|
240 |
-
|
241 |
-
# Mark all messages as old after displaying
|
242 |
-
st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']]
|
243 |
-
|
244 |
-
except Exception as e:
|
245 |
-
st.error(f"Upsi, an unexpected error occurred: {e}")
|
246 |
-
# Optionally log the exception details to a file or error tracking service
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
def page2():
|
252 |
-
try:
|
253 |
-
hide_streamlit_style = """
|
254 |
-
<style>
|
255 |
-
#MainMenu {visibility: hidden;}
|
256 |
-
footer {visibility: hidden;}
|
257 |
-
</style>
|
258 |
-
"""
|
259 |
-
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
260 |
-
|
261 |
-
# Create columns for layout
|
262 |
-
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking
|
263 |
-
|
264 |
-
with col1:
|
265 |
-
st.title("Kodieren statt Frustrieren!")
|
266 |
-
|
267 |
-
with col2:
|
268 |
-
# Load and display the image in the right column, which will be the top-right corner of the page
|
269 |
-
image = Image.open('BinDoc Logo (Quadratisch).png')
|
270 |
-
st.image(image, use_column_width='always')
|
271 |
-
|
272 |
-
|
273 |
-
# Start tracking user interactions
|
274 |
-
with streamlit_analytics.track():
|
275 |
-
|
276 |
-
if not os.path.exists(pdf_path2):
|
277 |
-
st.error("File not found. Please check the file path.")
|
278 |
-
return
|
279 |
-
|
280 |
-
VectorStore = load_vector_store(pdf_path2, "vector_store_page2", force_reload=False)
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
display_chat_history(st.session_state['chat_history_page2'])
|
285 |
-
|
286 |
-
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
287 |
-
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
288 |
-
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
|
289 |
-
|
290 |
-
new_messages_placeholder = st.empty()
|
291 |
-
|
292 |
-
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
|
293 |
-
|
294 |
-
add_vertical_space(2) # Adjust as per the desired spacing
|
295 |
-
|
296 |
-
# Create two columns for the buttons
|
297 |
-
col1, col2 = st.columns(2)
|
298 |
-
|
299 |
-
with col1:
|
300 |
-
if st.button("Wann kodiere ich etwas als Hauptdiagnose und wann als Nebendiagnose?"):
|
301 |
-
query = "Wann kodiere ich etwas als Hauptdiagnose und wann als Nebendiagnose?"
|
302 |
-
if st.button("Ein Patient wird mit Aszites bei bekannter Leberzirrhose stationär aufgenommen. Es wird nur der Aszites durch eine Punktion behandelt.Wie kodiere ich das?"):
|
303 |
-
query = ("Ein Patient wird mit Aszites bei bekannter Leberzirrhose stationär aufgenommen. Es wird nur der Aszites durch eine Punktion behandelt.Wie kodiere ich das?")
|
304 |
-
if st.button("Hauptdiagnose: Hirntumor wie kodiere ich das?"):
|
305 |
-
query = "Hauptdiagnose: Hirntumor wie kodiere ich das?"
|
306 |
-
|
307 |
-
|
308 |
-
with col2:
|
309 |
-
if st.button("Welche Prozeduren werden normalerweise nicht verschlüsselt?"):
|
310 |
-
query = "Welche Prozeduren werden normalerweise nicht verschlüsselt?"
|
311 |
-
if st.button("Was muss ich bei der Kodierung der Folgezusänden von Krankheiten beachten?"):
|
312 |
-
query = "Was muss ich bei der Kodierung der Folgezusänden von Krankheiten beachten?"
|
313 |
-
if st.button("Was mache ich bei einer Verdachtsdiagnose, wenn mein Patien nach Hause entlassen wird?"):
|
314 |
-
query = "Was mache ich bei einer Verdachtsdiagnose, wenn mein Patien nach Hause entlassen wird?"
|
315 |
-
|
316 |
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
# You can use Streamlit's text function to display the timing
|
339 |
-
st.text(f"Response time: {duration:.2f} seconds")
|
340 |
-
|
341 |
-
st.session_state['chat_history_page2'].append(("Bot", response, "new"))
|
342 |
-
|
343 |
-
|
344 |
-
# Display new messages at the bottom
|
345 |
-
new_messages = st.session_state['chat_history_page2'][-2:]
|
346 |
-
for chat in new_messages:
|
347 |
-
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
348 |
-
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
349 |
-
|
350 |
-
|
351 |
-
# Clear the input field after the query is made
|
352 |
-
query = ""
|
353 |
-
|
354 |
-
# Mark all messages as old after displaying
|
355 |
-
st.session_state['chat_history_page2'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page2']]
|
356 |
-
|
357 |
-
except Exception as e:
|
358 |
-
st.error(f"Upsi, an unexpected error occurred: {e}")
|
359 |
-
# Optionally log the exception details to a file or error tracking service
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
def main():
|
366 |
-
# Sidebar content
|
367 |
-
with st.sidebar:
|
368 |
-
st.title('BinDoc GmbH')
|
369 |
-
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
|
370 |
-
add_vertical_space(1)
|
371 |
-
page = st.sidebar.selectbox("Choose a page", ["Document Analysis Bot", "Coding Assistance Bot"])
|
372 |
-
add_vertical_space(1)
|
373 |
-
st.write('Made with ❤️ by BinDoc GmbH')
|
374 |
-
|
375 |
-
# Main area content based on page selection
|
376 |
-
if page == "Document Analysis Bot":
|
377 |
-
page1()
|
378 |
-
elif page == "Coding Assistance Bot":
|
379 |
-
page2()
|
380 |
-
|
381 |
-
|
382 |
-
if __name__ == "__main__":
|
383 |
-
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from lida import Manager, TextGenerationConfig , llm
|
|
|
|
|
|
|
3 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import os
|
5 |
+
import openai
|
6 |
+
from PIL import Image
|
7 |
+
from io import BytesIO
|
8 |
+
import base64
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
12 |
+
|
13 |
+
def base64_to_image(base64_string):
|
14 |
+
# Decode the base64 string
|
15 |
+
byte_data = base64.b64decode(base64_string)
|
16 |
+
|
17 |
+
# Use BytesIO to convert the byte data to image
|
18 |
+
return Image.open(BytesIO(byte_data))
|
19 |
+
|
20 |
+
|
21 |
+
lida = Manager(text_gen = llm("openai"))
|
22 |
+
textgen_config = TextGenerationConfig(n=1, temperature=0.5, model="gpt-3.5-turbo-0301", use_cache=True)
|
23 |
+
|
24 |
+
menu = st.sidebar.selectbox("Choose an Option", ["Summarize", "Question based Graph"])
|
25 |
+
|
26 |
+
if menu == "Summarize":
|
27 |
+
st.subheader("Summarization of your Data")
|
28 |
+
file_uploader = st.file_uploader("Upload your CSV", type="csv")
|
29 |
+
if file_uploader is not None:
|
30 |
+
path_to_save = "filename.csv"
|
31 |
+
with open(path_to_save, "wb") as f:
|
32 |
+
f.write(file_uploader.getvalue())
|
33 |
+
summary = lida.summarize("filename.csv", summary_method="default", textgen_config=textgen_config)
|
34 |
+
st.write(summary)
|
35 |
+
goals = lida.goals(summary, n=2, textgen_config=textgen_config)
|
36 |
+
for goal in goals:
|
37 |
+
st.write(goal)
|
38 |
+
i = 0
|
39 |
+
library = "seaborn"
|
40 |
+
textgen_config = TextGenerationConfig(n=1, temperature=0.2, use_cache=True)
|
41 |
+
charts = lida.visualize(summary=summary, goal=goals[i], textgen_config=textgen_config, library=library)
|
42 |
+
img_base64_string = charts[0].raster
|
43 |
+
img = base64_to_image(img_base64_string)
|
44 |
+
st.image(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
elif menu == "Question based Graph":
|
50 |
+
st.subheader("Query your Data to Generate Graph")
|
51 |
+
file_uploader = st.file_uploader("Upload your CSV", type="csv")
|
52 |
+
if file_uploader is not None:
|
53 |
+
path_to_save = "filename1.csv"
|
54 |
+
with open(path_to_save, "wb") as f:
|
55 |
+
f.write(file_uploader.getvalue())
|
56 |
+
text_area = st.text_area("Query your Data to Generate Graph", height=200)
|
57 |
+
if st.button("Generate Graph"):
|
58 |
+
if len(text_area) > 0:
|
59 |
+
st.info("Your Query: " + text_area)
|
60 |
+
lida = Manager(text_gen = llm("openai"))
|
61 |
+
textgen_config = TextGenerationConfig(n=1, temperature=0.2, use_cache=True)
|
62 |
+
summary = lida.summarize("filename1.csv", summary_method="default", textgen_config=textgen_config)
|
63 |
+
user_query = text_area
|
64 |
+
charts = lida.visualize(summary=summary, goal=user_query, textgen_config=textgen_config)
|
65 |
+
charts[0]
|
66 |
+
image_base64 = charts[0].raster
|
67 |
+
img = base64_to_image(image_base64)
|
68 |
+
st.image(img)
|
69 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|