File size: 1,636 Bytes
97266bf
8b66fe4
97266bf
2a9ec14
 
8b66fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a9ec14
8b66fe4
 
2a9ec14
8b66fe4
 
 
 
 
 
 
97266bf
 
8b66fe4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
from peft import PeftModel

# Model and tokenizer names
model_name = "google/gemma-2-2b-it"
lora_model_name = "Anlam-Lab/gemma-2-2b-it-anlamlab-SA-Chatgpt4mini"

# Configure 4-bit quantization
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_use_double_quant=True,
)

# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Load the base model with 4-bit quantization
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",
    quantization_config=bnb_config
)

# Load the LoRA adapter
model = PeftModel.from_pretrained(model, lora_model_name)

def generate_response(input_text):
    inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
    
    generation_config = {
        "max_length": 512,
        "temperature": 0.01,
        "do_sample": True,
        "pad_token_id": tokenizer.pad_token_id,
        "eos_token_id": tokenizer.eos_token_id,
    }
    
    with torch.no_grad():
        outputs = model.generate(**inputs, **generation_config)
        
    response = tokenizer.decode(outputs[0])
    return response.split("<start_of_turn>model\n")[1].split("<end_of_turn>")[0]

# Create Gradio interface
iface = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(lines=5, placeholder="Metninizi buraya girin..."),
    outputs=gr.Textbox(lines=5, label="Model Çıktısı"),
    title="Anlam-Lab"
)

if __name__ == "__main__":
    iface.launch()