Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,96 +1,57 @@ | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
            -
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 3 | 
             
            import torch
         | 
| 4 | 
             
            from peft import PeftModel
         | 
| 5 | 
            -
            from typing import Dict, Any
         | 
| 6 |  | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 14 |  | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
                    self.tokenizer.pad_token = self.tokenizer.eos_token
         | 
| 18 | 
            -
                    
         | 
| 19 | 
            -
                    self.model = AutoModelForCausalLM.from_pretrained(
         | 
| 20 | 
            -
                        base_model_name,
         | 
| 21 | 
            -
                        device_map="auto",
         | 
| 22 | 
            -
                        torch_dtype=torch.float16
         | 
| 23 | 
            -
                    )
         | 
| 24 | 
            -
                    self.model = PeftModel.from_pretrained(self.model, lora_model_name)
         | 
| 25 | 
            -
                    self.model.eval()
         | 
| 26 | 
            -
             | 
| 27 | 
            -
                def generate_response(self, input_text: str) -> str:
         | 
| 28 | 
            -
                    if not input_text or not input_text.strip():
         | 
| 29 | 
            -
                        return "Error: Please provide valid input text."
         | 
| 30 | 
            -
             | 
| 31 | 
            -
                    try:
         | 
| 32 | 
            -
                        inputs = self.tokenizer(
         | 
| 33 | 
            -
                            input_text,
         | 
| 34 | 
            -
                            return_tensors="pt",
         | 
| 35 | 
            -
                            padding=True,
         | 
| 36 | 
            -
                            truncation=True,
         | 
| 37 | 
            -
                            max_length=512
         | 
| 38 | 
            -
                        ).to(self.device)
         | 
| 39 | 
            -
             | 
| 40 | 
            -
                        generation_config: Dict[str, Any] = {
         | 
| 41 | 
            -
                            "max_length": 512,
         | 
| 42 | 
            -
                            "temperature": 0.01,
         | 
| 43 | 
            -
                            "do_sample": True,
         | 
| 44 | 
            -
                            "pad_token_id": self.tokenizer.pad_token_id,
         | 
| 45 | 
            -
                            "eos_token_id": self.tokenizer.eos_token_id,
         | 
| 46 | 
            -
                            "num_return_sequences": 1,
         | 
| 47 | 
            -
                            "top_k": 50,
         | 
| 48 | 
            -
                            "top_p": 0.95,
         | 
| 49 | 
            -
                        }
         | 
| 50 | 
            -
             | 
| 51 | 
            -
                        with torch.no_grad():
         | 
| 52 | 
            -
                            outputs = self.model.generate(**inputs, **generation_config)
         | 
| 53 | 
            -
                        
         | 
| 54 | 
            -
                        response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
         | 
| 55 | 
            -
                        return response.split("<|end_header_id|>")[-1].split("<|eot_id|>")[0].strip()
         | 
| 56 | 
            -
             | 
| 57 | 
            -
                    except Exception as e:
         | 
| 58 | 
            -
                        return f"Error generating response: {str(e)}"
         | 
| 59 | 
            -
             | 
| 60 | 
            -
                def create_interface(self) -> gr.Interface:
         | 
| 61 | 
            -
                    return gr.Interface(
         | 
| 62 | 
            -
                        fn=self.generate_response,
         | 
| 63 | 
            -
                        inputs=gr.Textbox(
         | 
| 64 | 
            -
                            lines=5,
         | 
| 65 | 
            -
                            placeholder="Metninizi buraya girin...",
         | 
| 66 | 
            -
                            label="Giriş Metni"
         | 
| 67 | 
            -
                        ),
         | 
| 68 | 
            -
                        outputs=gr.Textbox(
         | 
| 69 | 
            -
                            lines=5,
         | 
| 70 | 
            -
                            label="Model Çıktısı"
         | 
| 71 | 
            -
                        ),
         | 
| 72 | 
            -
                        title="Anlam-Lab Duygu Analizi",
         | 
| 73 | 
            -
                        description="Metin girişi yaparak duygu analizi sonucunu alabilirsiniz.",
         | 
| 74 | 
            -
                        examples=[
         | 
| 75 | 
            -
                            ["Akıllı saati uzun süre kullandım ve şık tasarımı, harika sağlık takibi özellikleri ve uzun pil ömrüyle çok memnun kaldım."],
         | 
| 76 | 
            -
                            ["Ürünü aldım ama pil ömrü kısa, ekran parlaklığı yetersiz ve sağlık takibi doğru sonuçlar vermedi."],
         | 
| 77 | 
            -
                        ],
         | 
| 78 | 
            -
                        theme="default"
         | 
| 79 | 
            -
                    )
         | 
| 80 |  | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
| 84 | 
            -
             | 
| 85 | 
            -
             | 
| 86 | 
            -
             | 
| 87 | 
            -
             | 
| 88 | 
            -
                        server_name="0.0.0.0",
         | 
| 89 | 
            -
                        server_port=7860
         | 
| 90 | 
            -
                    )
         | 
| 91 | 
            -
                except Exception as e:
         | 
| 92 | 
            -
                    print(f"Error launching interface: {str(e)}")
         | 
| 93 | 
            -
                    raise
         | 
| 94 |  | 
| 95 | 
             
            if __name__ == "__main__":
         | 
| 96 | 
            -
                 | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
         | 
| 3 | 
             
            import torch
         | 
| 4 | 
             
            from peft import PeftModel
         | 
|  | |
| 5 |  | 
| 6 | 
            +
            # Model and tokenizer names
         | 
| 7 | 
            +
            model_name = "google/gemma-2-2b-it"
         | 
| 8 | 
            +
            lora_model_name = "Anlam-Lab/gemma-2-2b-it-anlamlab-SA-Chatgpt4mini"
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            # Configure 4-bit quantization
         | 
| 11 | 
            +
            bnb_config = BitsAndBytesConfig(
         | 
| 12 | 
            +
                load_in_4bit=True,
         | 
| 13 | 
            +
                bnb_4bit_quant_type="nf4",
         | 
| 14 | 
            +
                bnb_4bit_compute_dtype=torch.float16,
         | 
| 15 | 
            +
                bnb_4bit_use_double_quant=True,
         | 
| 16 | 
            +
            )
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            # Initialize tokenizer
         | 
| 19 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            # Load the base model with 4-bit quantization
         | 
| 22 | 
            +
            model = AutoModelForCausalLM.from_pretrained(
         | 
| 23 | 
            +
                model_name,
         | 
| 24 | 
            +
                device_map="auto",
         | 
| 25 | 
            +
                quantization_config=bnb_config
         | 
| 26 | 
            +
            )
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            # Load the LoRA adapter
         | 
| 29 | 
            +
            model = PeftModel.from_pretrained(model, lora_model_name)
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            def generate_response(input_text):
         | 
| 32 | 
            +
                inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
         | 
| 33 | 
            +
                
         | 
| 34 | 
            +
                generation_config = {
         | 
| 35 | 
            +
                    "max_length": 512,
         | 
| 36 | 
            +
                    "temperature": 0.01,
         | 
| 37 | 
            +
                    "do_sample": True,
         | 
| 38 | 
            +
                    "pad_token_id": tokenizer.pad_token_id,
         | 
| 39 | 
            +
                    "eos_token_id": tokenizer.eos_token_id,
         | 
| 40 | 
            +
                }
         | 
| 41 | 
            +
                
         | 
| 42 | 
            +
                with torch.no_grad():
         | 
| 43 | 
            +
                    outputs = model.generate(**inputs, **generation_config)
         | 
| 44 |  | 
| 45 | 
            +
                response = tokenizer.decode(outputs[0])
         | 
| 46 | 
            +
                return response.split("<start_of_turn>model\n")[1].split("<end_of_turn>")[0]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 47 |  | 
| 48 | 
            +
            # Create Gradio interface
         | 
| 49 | 
            +
            iface = gr.Interface(
         | 
| 50 | 
            +
                fn=generate_response,
         | 
| 51 | 
            +
                inputs=gr.Textbox(lines=5, placeholder="Metninizi buraya girin..."),
         | 
| 52 | 
            +
                outputs=gr.Textbox(lines=5, label="Model Çıktısı"),
         | 
| 53 | 
            +
                title="Anlam-Lab"
         | 
| 54 | 
            +
            )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 55 |  | 
| 56 | 
             
            if __name__ == "__main__":
         | 
| 57 | 
            +
                iface.launch()
         | 

