AnhP's picture
Upload 170 files
1e4a2ab verified
raw
history blame
32.1 kB
import os
import sys
import glob
import json
import torch
import hashlib
import logging
import argparse
import datetime
import warnings
import torch.distributed as dist
import torch.utils.data as tdata
import torch.multiprocessing as mp
from tqdm import tqdm
from collections import OrderedDict
from random import randint, shuffle
from torch.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from time import time as ttime
from torch.nn import functional as F
from distutils.util import strtobool
from torch.nn.parallel import DistributedDataParallel as DDP
sys.path.append(os.getcwd())
from main.library import opencl
from main.app.variables import logger, translations
from main.inference.conversion.utils import clear_gpu_cache
from main.library.algorithm.synthesizers import Synthesizer
from main.library.algorithm.discriminators import MultiPeriodDiscriminator
from main.library.algorithm.commons import slice_segments, clip_grad_value
from main.inference.training.mel_processing import spec_to_mel_torch, mel_spectrogram_torch
from main.inference.training.losses import discriminator_loss, kl_loss, feature_loss, generator_loss
from main.inference.training.data_utils import TextAudioCollate, TextAudioCollateMultiNSFsid, TextAudioLoader, TextAudioLoaderMultiNSFsid, DistributedBucketSampler
from main.inference.training.utils import HParams, replace_keys_in_dict, load_checkpoint, latest_checkpoint_path, save_checkpoint, summarize, plot_spectrogram_to_numpy
from main.app.variables import config as main_config
from main.app.variables import configs as main_configs
warnings.filterwarnings("ignore")
logging.getLogger("torch").setLevel(logging.ERROR)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--train", action='store_true')
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--rvc_version", type=str, default="v2")
parser.add_argument("--save_every_epoch", type=int, required=True)
parser.add_argument("--save_only_latest", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--save_every_weights", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--total_epoch", type=int, default=300)
parser.add_argument("--sample_rate", type=int, required=True)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--gpu", type=str, default="0")
parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--g_pretrained_path", type=str, default="")
parser.add_argument("--d_pretrained_path", type=str, default="")
parser.add_argument("--overtraining_detector", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--overtraining_threshold", type=int, default=50)
parser.add_argument("--cleanup", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--cache_data_in_gpu", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--model_author", type=str)
parser.add_argument("--vocoder", type=str, default="Default")
parser.add_argument("--checkpointing", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--deterministic", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--benchmark", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--optimizer", type=str, default="AdamW")
parser.add_argument("--energy_use", type=lambda x: bool(strtobool(x)), default=False)
return parser.parse_args()
args = parse_arguments()
model_name, save_every_epoch, total_epoch, pretrainG, pretrainD, version, gpus, batch_size, sample_rate, pitch_guidance, save_only_latest, save_every_weights, cache_data_in_gpu, overtraining_detector, overtraining_threshold, cleanup, model_author, vocoder, checkpointing, optimizer_choice, energy_use = args.model_name, args.save_every_epoch, args.total_epoch, args.g_pretrained_path, args.d_pretrained_path, args.rvc_version, args.gpu, args.batch_size, args.sample_rate, args.pitch_guidance, args.save_only_latest, args.save_every_weights, args.cache_data_in_gpu, args.overtraining_detector, args.overtraining_threshold, args.cleanup, args.model_author, args.vocoder, args.checkpointing, args.optimizer, args.energy_use
experiment_dir = os.path.join(main_configs["logs_path"], model_name)
training_file_path = os.path.join(experiment_dir, "training_data.json")
config_save_path = os.path.join(experiment_dir, "config.json")
torch.backends.cudnn.deterministic = args.deterministic if not main_config.device.startswith("ocl") else False
torch.backends.cudnn.benchmark = args.benchmark if not main_config.device.startswith("ocl") else False
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
global_step, last_loss_gen_all, overtrain_save_epoch = 0, 0, 0
loss_gen_history, smoothed_loss_gen_history, loss_disc_history, smoothed_loss_disc_history = [], [], [], []
with open(config_save_path, "r") as f:
config = json.load(f)
config = HParams(**config)
config.data.training_files = os.path.join(experiment_dir, "filelist.txt")
def main():
global training_file_path, last_loss_gen_all, smoothed_loss_gen_history, loss_gen_history, loss_disc_history, smoothed_loss_disc_history, overtrain_save_epoch, model_author, vocoder, checkpointing, gpus, energy_use
log_data = {translations['modelname']: model_name, translations["save_every_epoch"]: save_every_epoch, translations["total_e"]: total_epoch, translations["dorg"].format(pretrainG=pretrainG, pretrainD=pretrainD): "", translations['training_version']: version, "Gpu": gpus, translations['batch_size']: batch_size, translations['pretrain_sr']: sample_rate, translations['training_f0']: pitch_guidance, translations['save_only_latest']: save_only_latest, translations['save_every_weights']: save_every_weights, translations['cache_in_gpu']: cache_data_in_gpu, translations['overtraining_detector']: overtraining_detector, translations['threshold']: overtraining_threshold, translations['cleanup_training']: cleanup, translations['memory_efficient_training']: checkpointing, translations["optimizer"]: optimizer_choice, translations["train&energy"]: energy_use}
if model_author: log_data[translations["model_author"].format(model_author=model_author)] = ""
if vocoder != "Default": log_data[translations['vocoder']] = vocoder
for key, value in log_data.items():
logger.debug(f"{key}: {value}" if value != "" else f"{key} {value}")
try:
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
if torch.cuda.is_available():
device, gpus = torch.device("cuda"), [int(item) for item in gpus.split("-")]
n_gpus = len(gpus)
elif opencl.is_available():
device, gpus = torch.device("ocl"), [int(item) for item in gpus.split("-")]
n_gpus = len(gpus)
elif torch.backends.mps.is_available():
device, gpus = torch.device("mps"), [0]
n_gpus = 1
else:
device, gpus = torch.device("cpu"), [0]
n_gpus = 1
logger.warning(translations["not_gpu"])
def start():
children = []
pid_data = {"process_pids": []}
with open(config_save_path, "r") as pid_file:
try:
pid_data.update(json.load(pid_file))
except json.JSONDecodeError:
pass
with open(config_save_path, "w") as pid_file:
for rank, device_id in enumerate(gpus):
subproc = mp.Process(target=run, args=(rank, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, total_epoch, save_every_weights, config, device, device_id, model_author, vocoder, checkpointing, energy_use))
children.append(subproc)
subproc.start()
pid_data["process_pids"].append(subproc.pid)
json.dump(pid_data, pid_file, indent=4)
for i in range(n_gpus):
children[i].join()
def load_from_json(file_path):
if os.path.exists(file_path):
with open(file_path, "r") as f:
data = json.load(f)
return (data.get("loss_disc_history", []), data.get("smoothed_loss_disc_history", []), data.get("loss_gen_history", []), data.get("smoothed_loss_gen_history", []))
return [], [], [], []
def continue_overtrain_detector(training_file_path):
if overtraining_detector and os.path.exists(training_file_path): (loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history) = load_from_json(training_file_path)
if cleanup:
for root, dirs, files in os.walk(experiment_dir, topdown=False):
for name in files:
file_path = os.path.join(root, name)
_, file_extension = os.path.splitext(name)
if (file_extension == ".0" or (name.startswith("D_") and file_extension == ".pth") or (name.startswith("G_") and file_extension == ".pth") or (file_extension == ".index")): os.remove(file_path)
for name in dirs:
if name == "eval":
folder_path = os.path.join(root, name)
for item in os.listdir(folder_path):
item_path = os.path.join(folder_path, item)
if os.path.isfile(item_path): os.remove(item_path)
os.rmdir(folder_path)
continue_overtrain_detector(training_file_path)
start()
except Exception as e:
logger.error(f"{translations['training_error']} {e}")
import traceback
logger.debug(traceback.format_exc())
def verify_checkpoint_shapes(checkpoint_path, model):
checkpoint = torch.load(checkpoint_path, map_location="cpu", weights_only=True)
checkpoint_state_dict = checkpoint["model"]
try:
model_state_dict = model.module.load_state_dict(checkpoint_state_dict) if hasattr(model, "module") else model.load_state_dict(checkpoint_state_dict)
except RuntimeError:
logger.warning(translations["checkpointing_err"])
sys.exit(1)
else: del checkpoint, checkpoint_state_dict, model_state_dict
class EpochRecorder:
def __init__(self):
self.last_time = ttime()
def record(self):
now_time = ttime()
elapsed_time = now_time - self.last_time
self.last_time = now_time
return translations["time_or_speed_training"].format(current_time=datetime.datetime.now().strftime("%H:%M:%S"), elapsed_time_str=str(datetime.timedelta(seconds=int(round(elapsed_time, 1)))))
def extract_model(ckpt, sr, pitch_guidance, name, model_path, epoch, step, version, hps, model_author, vocoder, energy_use):
try:
logger.info(translations["savemodel"].format(model_dir=model_path, epoch=epoch, step=step))
os.makedirs(os.path.dirname(model_path), exist_ok=True)
opt = OrderedDict(weight={key: value.half() for key, value in ckpt.items() if "enc_q" not in key})
opt["config"] = [hps.data.filter_length // 2 + 1, 32, hps.model.inter_channels, hps.model.hidden_channels, hps.model.filter_channels, hps.model.n_heads, hps.model.n_layers, hps.model.kernel_size, hps.model.p_dropout, hps.model.resblock, hps.model.resblock_kernel_sizes, hps.model.resblock_dilation_sizes, hps.model.upsample_rates, hps.model.upsample_initial_channel, hps.model.upsample_kernel_sizes, hps.model.spk_embed_dim, hps.model.gin_channels, hps.data.sample_rate]
opt["epoch"] = f"{epoch}epoch"
opt["step"] = step
opt["sr"] = sr
opt["f0"] = int(pitch_guidance)
opt["version"] = version
opt["creation_date"] = datetime.datetime.now().isoformat()
opt["model_hash"] = hashlib.sha256(f"{str(ckpt)} {epoch} {step} {datetime.datetime.now().isoformat()}".encode()).hexdigest()
opt["model_name"] = name
opt["author"] = model_author
opt["vocoder"] = vocoder
opt["energy"] = energy_use
torch.save(replace_keys_in_dict(replace_keys_in_dict(opt, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g"), model_path)
except Exception as e:
logger.error(f"{translations['extract_model_error']}: {e}")
def run(rank, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, custom_total_epoch, custom_save_every_weights, config, device, device_id, model_author, vocoder, checkpointing, energy_use):
global global_step, optimizer_choice
try:
dist.init_process_group(backend=("gloo" if sys.platform == "win32" or device.type != "cuda" else "nccl"), init_method="env://", world_size=n_gpus, rank=rank)
except:
dist.init_process_group(backend=("gloo" if sys.platform == "win32" or device.type != "cuda" else "nccl"), init_method="env://?use_libuv=False", world_size=n_gpus, rank=rank)
torch.manual_seed(config.train.seed)
if device.type == "cuda": torch.cuda.manual_seed(config.train.seed)
elif device.type == "ocl": opencl.pytorch_ocl.manual_seed_all(config.train.seed)
if torch.cuda.is_available(): torch.cuda.set_device(device_id)
writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval")) if rank == 0 else None
if pitch_guidance:
train_dataset = TextAudioLoaderMultiNSFsid(config.data, energy=energy_use)
collate_fn = TextAudioCollateMultiNSFsid(energy=energy_use)
else:
train_dataset = TextAudioLoader(config.data, energy=energy_use)
collate_fn = TextAudioCollate(energy=energy_use)
train_loader = tdata.DataLoader(train_dataset, num_workers=4, shuffle=False, pin_memory=True, collate_fn=collate_fn, batch_sampler=DistributedBucketSampler(train_dataset, batch_size * n_gpus, [100, 200, 300, 400, 500, 600, 700, 800, 900], num_replicas=n_gpus, rank=rank, shuffle=True), persistent_workers=True, prefetch_factor=8)
net_g, net_d = Synthesizer(config.data.filter_length // 2 + 1, config.train.segment_size // config.data.hop_length, **config.model, use_f0=pitch_guidance, sr=sample_rate, vocoder=vocoder, checkpointing=checkpointing, energy=energy_use), MultiPeriodDiscriminator(version, config.model.use_spectral_norm, checkpointing=checkpointing)
net_g, net_d = (net_g.cuda(device_id), net_d.cuda(device_id)) if torch.cuda.is_available() else (net_g.to(device), net_d.to(device))
optimizer_optim = torch.optim.AdamW if optimizer_choice == "AdamW" else torch.optim.RAdam
optim_g, optim_d = optimizer_optim(net_g.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps), optimizer_optim(net_d.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps)
if device.type != "ocl": net_g, net_d = (DDP(net_g, device_ids=[device_id]), DDP(net_d, device_ids=[device_id])) if torch.cuda.is_available() else (DDP(net_g), DDP(net_d))
try:
logger.info(translations["start_training"])
_, _, _, epoch_str = load_checkpoint(logger, (os.path.join(experiment_dir, "D_latest.pth") if save_only_latest else latest_checkpoint_path(experiment_dir, "D_*.pth")), net_d, optim_d)
_, _, _, epoch_str = load_checkpoint(logger, (os.path.join(experiment_dir, "G_latest.pth") if save_only_latest else latest_checkpoint_path(experiment_dir, "G_*.pth")), net_g, optim_g)
epoch_str += 1
global_step = (epoch_str - 1) * len(train_loader)
except:
epoch_str, global_step = 1, 0
verify = main_configs.get("pretrain_verify_shape", True)
strict = main_configs.get("pretrain_strict", True)
if pretrainG != "" and pretrainG != "None":
if rank == 0:
if verify: verify_checkpoint_shapes(pretrainG, net_g)
logger.info(translations["import_pretrain"].format(dg="G", pretrain=pretrainG))
ckptG = torch.load(pretrainG, map_location="cpu", weights_only=True)["model"]
net_g.module.load_state_dict(ckptG, strict=strict) if hasattr(net_g, "module") else net_g.load_state_dict(ckptG, strict=strict)
else: logger.warning(translations["not_using_pretrain"].format(dg="G"))
if pretrainD != "" and pretrainD != "None":
if rank == 0:
if verify: verify_checkpoint_shapes(pretrainD, net_d)
logger.info(translations["import_pretrain"].format(dg="D", pretrain=pretrainD))
ckptD = torch.load(pretrainD, map_location="cpu", weights_only=True)["model"]
net_d.module.load_state_dict(ckptD, strict=strict) if hasattr(net_d, "module") else net_d.load_state_dict(ckptD, strict=strict)
else: logger.warning(translations["not_using_pretrain"].format(dg="D"))
scheduler_g, scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2), torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2)
scaler = GradScaler(device=device, enabled=main_config.is_half and device.type == "cuda")
optim_g.step(); optim_d.step()
cache = []
def to_device(x):
return x.cuda(device_id, non_blocking=True) if device.type == "cuda" else x.to(device)
for info in train_loader:
reference = (to_device(info[0]), to_device(info[1]))
if pitch_guidance:
reference += (to_device(info[2]), to_device(info[3]), to_device(info[8]))
reference += (to_device(info[9]),) if energy_use else (None,)
else:
reference += (None, None, to_device(info[6]))
reference += (to_device(info[7]),) if energy_use else (None,)
break
for epoch in range(epoch_str, total_epoch + 1):
train_and_evaluate(rank, epoch, config, [net_g, net_d], [optim_g, optim_d], scaler, train_loader, writer_eval, cache, custom_save_every_weights, custom_total_epoch, device, device_id, reference, model_author, vocoder, energy_use)
scheduler_g.step(); scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, scaler, train_loader, writer, cache, custom_save_every_weights, custom_total_epoch, device, device_id, reference, model_author, vocoder, energy_use):
global global_step, lowest_value, loss_disc, consecutive_increases_gen, consecutive_increases_disc
if epoch == 1:
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
last_loss_gen_all, consecutive_increases_gen, consecutive_increases_disc = 0.0, 0, 0
net_g, net_d = nets
optim_g, optim_d = optims
train_loader.batch_sampler.set_epoch(epoch)
net_g.train(); net_d.train()
if device.type == "cuda" and cache_data_in_gpu:
data_iterator = cache
if cache == []:
for batch_idx, info in enumerate(train_loader):
cache.append((batch_idx, [tensor.cuda(device_id, non_blocking=True) for tensor in info]))
else: shuffle(cache)
elif device.type == "ocl" and cache_data_in_gpu:
data_iterator = cache
if cache == []:
for batch_idx, info in enumerate(train_loader):
cache.append((batch_idx, [tensor.to(device_id, non_blocking=True) for tensor in info]))
else: shuffle(cache)
else: data_iterator = enumerate(train_loader)
epoch_recorder = EpochRecorder()
autocast_enabled = main_config.is_half and device.type == "cuda"
autocast_device = "cpu" if str(device.type).startswith("ocl") else device.type
autocast_dtype = torch.float32 if not autocast_enabled else (torch.bfloat16 if main_config.brain else torch.float16)
with tqdm(total=len(train_loader), leave=False) as pbar:
for batch_idx, info in data_iterator:
if device.type == "cuda" and not cache_data_in_gpu: info = [tensor.cuda(device_id, non_blocking=True) for tensor in info]
elif device.type == "ocl" and not cache_data_in_gpu: info = [tensor.to(device_id, non_blocking=True) for tensor in info]
else: info = [tensor.to(device) for tensor in info]
phone, phone_lengths = info[0], info[1]
if pitch_guidance:
pitch, pitchf = info[2], info[3]
spec, spec_lengths, wave, sid = info[4], info[5], info[6], info[8]
energy = info[9] if energy_use else None
else:
pitch = pitchf = None
spec, spec_lengths, wave, sid = info[2], info[3], info[4], info[6]
energy = info[7] if energy_use else None
with autocast(autocast_device , enabled=autocast_enabled, dtype=autocast_dtype):
y_hat, ids_slice, _, z_mask, (_, z_p, m_p, logs_p, _, logs_q) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid, energy)
mel = spec_to_mel_torch(spec, config.data.filter_length, config.data.n_mel_channels, config.data.sample_rate, config.data.mel_fmin, config.data.mel_fmax)
y_mel = slice_segments(mel, ids_slice, config.train.segment_size // config.data.hop_length, dim=3)
with autocast(autocast_device, enabled=autocast_enabled, dtype=autocast_dtype):
y_hat_mel = mel_spectrogram_torch(y_hat.float().squeeze(1), config.data.filter_length, config.data.n_mel_channels, config.data.sample_rate, config.data.hop_length, config.data.win_length, config.data.mel_fmin, config.data.mel_fmax)
wave = slice_segments(wave, ids_slice * config.data.hop_length, config.train.segment_size, dim=3)
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
with autocast(autocast_device, enabled=autocast_enabled, dtype=autocast_dtype):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
optim_d.zero_grad()
scaler.scale(loss_disc).backward()
scaler.unscale_(optim_d)
grad_norm_d = clip_grad_value(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(autocast_device, enabled=autocast_enabled, dtype=autocast_dtype):
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
with autocast(autocast_device, enabled=autocast_enabled, dtype=autocast_dtype):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel
loss_kl = (kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl)
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
if loss_gen_all < lowest_value["value"]: lowest_value = {"step": global_step, "value": loss_gen_all, "epoch": epoch}
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = clip_grad_value(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0 and global_step % config.train.log_interval == 0:
if loss_mel > 75: loss_mel = 75
if loss_kl > 9: loss_kl = 9
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc, "learning_rate": optim_g.param_groups[0]["lr"], "grad/norm_d": grad_norm_d, "grad/norm_g": grad_norm_g, "loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl}
scalar_dict.update({f"loss/g/{i}": v for i, v in enumerate(losses_gen)})
scalar_dict.update({f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)})
scalar_dict.update({f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)})
with torch.no_grad():
o, *_ = net_g.module.infer(*reference) if hasattr(net_g, "module") else net_g.infer(*reference)
summarize(writer=writer, global_step=global_step, images={"slice/mel_org": plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), "slice/mel_gen": plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), "all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy())}, scalars=scalar_dict, audios={f"gen/audio_{global_step:07d}": o[0, :, :]}, audio_sample_rate=config.data.sample_rate)
global_step += 1
pbar.update(1)
with torch.no_grad():
clear_gpu_cache()
def check_overtraining(smoothed_loss_history, threshold, epsilon=0.004):
if len(smoothed_loss_history) < threshold + 1: return False
for i in range(-threshold, -1):
if smoothed_loss_history[i + 1] > smoothed_loss_history[i]: return True
if abs(smoothed_loss_history[i + 1] - smoothed_loss_history[i]) >= epsilon: return False
return True
def update_exponential_moving_average(smoothed_loss_history, new_value, smoothing=0.987):
smoothed_value = new_value if not smoothed_loss_history else (smoothing * smoothed_loss_history[-1] + (1 - smoothing) * new_value)
smoothed_loss_history.append(smoothed_value)
return smoothed_value
def save_to_json(file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history):
with open(file_path, "w") as f:
json.dump({"loss_disc_history": loss_disc_history, "smoothed_loss_disc_history": smoothed_loss_disc_history, "loss_gen_history": loss_gen_history, "smoothed_loss_gen_history": smoothed_loss_gen_history}, f)
model_add, model_del = [], []
done = False
if rank == 0:
if epoch % save_every_epoch == False:
checkpoint_suffix = f"{'latest' if save_only_latest else global_step}.pth"
save_checkpoint(logger, net_g, optim_g, config.train.learning_rate, epoch, os.path.join(experiment_dir, "G_" + checkpoint_suffix))
save_checkpoint(logger, net_d, optim_d, config.train.learning_rate, epoch, os.path.join(experiment_dir, "D_" + checkpoint_suffix))
if custom_save_every_weights: model_add.append(os.path.join(main_configs["weights_path"], f"{model_name}_{epoch}e_{global_step}s.pth"))
if overtraining_detector and epoch > 1:
current_loss_disc, current_loss_gen = float(loss_disc), float(lowest_value["value"])
loss_disc_history.append(current_loss_disc)
loss_gen_history.append(current_loss_gen)
smoothed_value_disc = update_exponential_moving_average(smoothed_loss_disc_history, current_loss_disc)
smoothed_value_gen = update_exponential_moving_average(smoothed_loss_gen_history, current_loss_gen)
is_overtraining_disc = check_overtraining(smoothed_loss_disc_history, overtraining_threshold * 2)
is_overtraining_gen = check_overtraining(smoothed_loss_gen_history, overtraining_threshold, 0.01)
consecutive_increases_disc = (consecutive_increases_disc + 1) if is_overtraining_disc else 0
consecutive_increases_gen = (consecutive_increases_gen + 1) if is_overtraining_gen else 0
if epoch % save_every_epoch == 0: save_to_json(training_file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history)
if (is_overtraining_gen and consecutive_increases_gen == overtraining_threshold or is_overtraining_disc and consecutive_increases_disc == (overtraining_threshold * 2)):
logger.info(translations["overtraining_find"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
done = True
else:
logger.info(translations["best_epoch"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
for file in glob.glob(os.path.join(main_configs["weights_path"], f"{model_name}_*e_*s_best_epoch.pth")):
model_del.append(file)
model_add.append(os.path.join(main_configs["weights_path"], f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth"))
if epoch >= custom_total_epoch:
logger.info(translations["success_training"].format(epoch=epoch, global_step=global_step, loss_gen_all=round(loss_gen_all.item(), 3)))
logger.info(translations["training_info"].format(lowest_value_rounded=round(float(lowest_value["value"]), 3), lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step']))
model_add.append(os.path.join(main_configs["weights_path"], f"{model_name}_{epoch}e_{global_step}s.pth"))
done = True
for m in model_del:
os.remove(m)
if model_add:
ckpt = (net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict())
for m in model_add:
extract_model(ckpt=ckpt, sr=sample_rate, pitch_guidance=pitch_guidance == True, name=model_name, model_path=m, epoch=epoch, step=global_step, version=version, hps=hps, model_author=model_author, vocoder=vocoder, energy_use=energy_use)
lowest_value_rounded = round(float(lowest_value["value"]), 3)
if epoch > 1 and overtraining_detector: logger.info(translations["model_training_info"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'], remaining_epochs_gen=(overtraining_threshold - consecutive_increases_gen), remaining_epochs_disc=((overtraining_threshold * 2) - consecutive_increases_disc), smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
elif epoch > 1 and overtraining_detector == False: logger.info(translations["model_training_info_2"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step']))
else: logger.info(translations["model_training_info_3"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record()))
logger.debug(f"loss_gen_all: {loss_gen_all} loss_gen: {loss_gen} loss_fm: {loss_fm} loss_mel: {loss_mel} loss_kl: {loss_kl}")
last_loss_gen_all = loss_gen_all
if done:
pid_file_path = os.path.join(experiment_dir, "config.json")
with open(pid_file_path, "r") as pid_file:
pid_data = json.load(pid_file)
with open(pid_file_path, "w") as pid_file:
pid_data.pop("process_pids", None)
json.dump(pid_data, pid_file, indent=4)
if os.path.exists(os.path.join(experiment_dir, "train_pid.txt")): os.remove(os.path.join(experiment_dir, "train_pid.txt"))
os._exit(0)
with torch.no_grad():
clear_gpu_cache()
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
main()