File size: 32,069 Bytes
1e4a2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import os
import sys
import glob
import json
import torch
import hashlib
import logging
import argparse
import datetime
import warnings
import torch.distributed as dist
import torch.utils.data as tdata
import torch.multiprocessing as mp
from tqdm import tqdm
from collections import OrderedDict
from random import randint, shuffle
from torch.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from time import time as ttime
from torch.nn import functional as F
from distutils.util import strtobool
from torch.nn.parallel import DistributedDataParallel as DDP
sys.path.append(os.getcwd())
from main.library import opencl
from main.app.variables import logger, translations
from main.inference.conversion.utils import clear_gpu_cache
from main.library.algorithm.synthesizers import Synthesizer
from main.library.algorithm.discriminators import MultiPeriodDiscriminator
from main.library.algorithm.commons import slice_segments, clip_grad_value
from main.inference.training.mel_processing import spec_to_mel_torch, mel_spectrogram_torch
from main.inference.training.losses import discriminator_loss, kl_loss, feature_loss, generator_loss
from main.inference.training.data_utils import TextAudioCollate, TextAudioCollateMultiNSFsid, TextAudioLoader, TextAudioLoaderMultiNSFsid, DistributedBucketSampler
from main.inference.training.utils import HParams, replace_keys_in_dict, load_checkpoint, latest_checkpoint_path, save_checkpoint, summarize, plot_spectrogram_to_numpy
from main.app.variables import config as main_config
from main.app.variables import configs as main_configs
warnings.filterwarnings("ignore")
logging.getLogger("torch").setLevel(logging.ERROR)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--train", action='store_true')
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--rvc_version", type=str, default="v2")
parser.add_argument("--save_every_epoch", type=int, required=True)
parser.add_argument("--save_only_latest", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--save_every_weights", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--total_epoch", type=int, default=300)
parser.add_argument("--sample_rate", type=int, required=True)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--gpu", type=str, default="0")
parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--g_pretrained_path", type=str, default="")
parser.add_argument("--d_pretrained_path", type=str, default="")
parser.add_argument("--overtraining_detector", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--overtraining_threshold", type=int, default=50)
parser.add_argument("--cleanup", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--cache_data_in_gpu", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--model_author", type=str)
parser.add_argument("--vocoder", type=str, default="Default")
parser.add_argument("--checkpointing", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--deterministic", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--benchmark", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--optimizer", type=str, default="AdamW")
parser.add_argument("--energy_use", type=lambda x: bool(strtobool(x)), default=False)
return parser.parse_args()
args = parse_arguments()
model_name, save_every_epoch, total_epoch, pretrainG, pretrainD, version, gpus, batch_size, sample_rate, pitch_guidance, save_only_latest, save_every_weights, cache_data_in_gpu, overtraining_detector, overtraining_threshold, cleanup, model_author, vocoder, checkpointing, optimizer_choice, energy_use = args.model_name, args.save_every_epoch, args.total_epoch, args.g_pretrained_path, args.d_pretrained_path, args.rvc_version, args.gpu, args.batch_size, args.sample_rate, args.pitch_guidance, args.save_only_latest, args.save_every_weights, args.cache_data_in_gpu, args.overtraining_detector, args.overtraining_threshold, args.cleanup, args.model_author, args.vocoder, args.checkpointing, args.optimizer, args.energy_use
experiment_dir = os.path.join(main_configs["logs_path"], model_name)
training_file_path = os.path.join(experiment_dir, "training_data.json")
config_save_path = os.path.join(experiment_dir, "config.json")
torch.backends.cudnn.deterministic = args.deterministic if not main_config.device.startswith("ocl") else False
torch.backends.cudnn.benchmark = args.benchmark if not main_config.device.startswith("ocl") else False
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
global_step, last_loss_gen_all, overtrain_save_epoch = 0, 0, 0
loss_gen_history, smoothed_loss_gen_history, loss_disc_history, smoothed_loss_disc_history = [], [], [], []
with open(config_save_path, "r") as f:
config = json.load(f)
config = HParams(**config)
config.data.training_files = os.path.join(experiment_dir, "filelist.txt")
def main():
global training_file_path, last_loss_gen_all, smoothed_loss_gen_history, loss_gen_history, loss_disc_history, smoothed_loss_disc_history, overtrain_save_epoch, model_author, vocoder, checkpointing, gpus, energy_use
log_data = {translations['modelname']: model_name, translations["save_every_epoch"]: save_every_epoch, translations["total_e"]: total_epoch, translations["dorg"].format(pretrainG=pretrainG, pretrainD=pretrainD): "", translations['training_version']: version, "Gpu": gpus, translations['batch_size']: batch_size, translations['pretrain_sr']: sample_rate, translations['training_f0']: pitch_guidance, translations['save_only_latest']: save_only_latest, translations['save_every_weights']: save_every_weights, translations['cache_in_gpu']: cache_data_in_gpu, translations['overtraining_detector']: overtraining_detector, translations['threshold']: overtraining_threshold, translations['cleanup_training']: cleanup, translations['memory_efficient_training']: checkpointing, translations["optimizer"]: optimizer_choice, translations["train&energy"]: energy_use}
if model_author: log_data[translations["model_author"].format(model_author=model_author)] = ""
if vocoder != "Default": log_data[translations['vocoder']] = vocoder
for key, value in log_data.items():
logger.debug(f"{key}: {value}" if value != "" else f"{key} {value}")
try:
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
if torch.cuda.is_available():
device, gpus = torch.device("cuda"), [int(item) for item in gpus.split("-")]
n_gpus = len(gpus)
elif opencl.is_available():
device, gpus = torch.device("ocl"), [int(item) for item in gpus.split("-")]
n_gpus = len(gpus)
elif torch.backends.mps.is_available():
device, gpus = torch.device("mps"), [0]
n_gpus = 1
else:
device, gpus = torch.device("cpu"), [0]
n_gpus = 1
logger.warning(translations["not_gpu"])
def start():
children = []
pid_data = {"process_pids": []}
with open(config_save_path, "r") as pid_file:
try:
pid_data.update(json.load(pid_file))
except json.JSONDecodeError:
pass
with open(config_save_path, "w") as pid_file:
for rank, device_id in enumerate(gpus):
subproc = mp.Process(target=run, args=(rank, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, total_epoch, save_every_weights, config, device, device_id, model_author, vocoder, checkpointing, energy_use))
children.append(subproc)
subproc.start()
pid_data["process_pids"].append(subproc.pid)
json.dump(pid_data, pid_file, indent=4)
for i in range(n_gpus):
children[i].join()
def load_from_json(file_path):
if os.path.exists(file_path):
with open(file_path, "r") as f:
data = json.load(f)
return (data.get("loss_disc_history", []), data.get("smoothed_loss_disc_history", []), data.get("loss_gen_history", []), data.get("smoothed_loss_gen_history", []))
return [], [], [], []
def continue_overtrain_detector(training_file_path):
if overtraining_detector and os.path.exists(training_file_path): (loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history) = load_from_json(training_file_path)
if cleanup:
for root, dirs, files in os.walk(experiment_dir, topdown=False):
for name in files:
file_path = os.path.join(root, name)
_, file_extension = os.path.splitext(name)
if (file_extension == ".0" or (name.startswith("D_") and file_extension == ".pth") or (name.startswith("G_") and file_extension == ".pth") or (file_extension == ".index")): os.remove(file_path)
for name in dirs:
if name == "eval":
folder_path = os.path.join(root, name)
for item in os.listdir(folder_path):
item_path = os.path.join(folder_path, item)
if os.path.isfile(item_path): os.remove(item_path)
os.rmdir(folder_path)
continue_overtrain_detector(training_file_path)
start()
except Exception as e:
logger.error(f"{translations['training_error']} {e}")
import traceback
logger.debug(traceback.format_exc())
def verify_checkpoint_shapes(checkpoint_path, model):
checkpoint = torch.load(checkpoint_path, map_location="cpu", weights_only=True)
checkpoint_state_dict = checkpoint["model"]
try:
model_state_dict = model.module.load_state_dict(checkpoint_state_dict) if hasattr(model, "module") else model.load_state_dict(checkpoint_state_dict)
except RuntimeError:
logger.warning(translations["checkpointing_err"])
sys.exit(1)
else: del checkpoint, checkpoint_state_dict, model_state_dict
class EpochRecorder:
def __init__(self):
self.last_time = ttime()
def record(self):
now_time = ttime()
elapsed_time = now_time - self.last_time
self.last_time = now_time
return translations["time_or_speed_training"].format(current_time=datetime.datetime.now().strftime("%H:%M:%S"), elapsed_time_str=str(datetime.timedelta(seconds=int(round(elapsed_time, 1)))))
def extract_model(ckpt, sr, pitch_guidance, name, model_path, epoch, step, version, hps, model_author, vocoder, energy_use):
try:
logger.info(translations["savemodel"].format(model_dir=model_path, epoch=epoch, step=step))
os.makedirs(os.path.dirname(model_path), exist_ok=True)
opt = OrderedDict(weight={key: value.half() for key, value in ckpt.items() if "enc_q" not in key})
opt["config"] = [hps.data.filter_length // 2 + 1, 32, hps.model.inter_channels, hps.model.hidden_channels, hps.model.filter_channels, hps.model.n_heads, hps.model.n_layers, hps.model.kernel_size, hps.model.p_dropout, hps.model.resblock, hps.model.resblock_kernel_sizes, hps.model.resblock_dilation_sizes, hps.model.upsample_rates, hps.model.upsample_initial_channel, hps.model.upsample_kernel_sizes, hps.model.spk_embed_dim, hps.model.gin_channels, hps.data.sample_rate]
opt["epoch"] = f"{epoch}epoch"
opt["step"] = step
opt["sr"] = sr
opt["f0"] = int(pitch_guidance)
opt["version"] = version
opt["creation_date"] = datetime.datetime.now().isoformat()
opt["model_hash"] = hashlib.sha256(f"{str(ckpt)} {epoch} {step} {datetime.datetime.now().isoformat()}".encode()).hexdigest()
opt["model_name"] = name
opt["author"] = model_author
opt["vocoder"] = vocoder
opt["energy"] = energy_use
torch.save(replace_keys_in_dict(replace_keys_in_dict(opt, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g"), model_path)
except Exception as e:
logger.error(f"{translations['extract_model_error']}: {e}")
def run(rank, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, custom_total_epoch, custom_save_every_weights, config, device, device_id, model_author, vocoder, checkpointing, energy_use):
global global_step, optimizer_choice
try:
dist.init_process_group(backend=("gloo" if sys.platform == "win32" or device.type != "cuda" else "nccl"), init_method="env://", world_size=n_gpus, rank=rank)
except:
dist.init_process_group(backend=("gloo" if sys.platform == "win32" or device.type != "cuda" else "nccl"), init_method="env://?use_libuv=False", world_size=n_gpus, rank=rank)
torch.manual_seed(config.train.seed)
if device.type == "cuda": torch.cuda.manual_seed(config.train.seed)
elif device.type == "ocl": opencl.pytorch_ocl.manual_seed_all(config.train.seed)
if torch.cuda.is_available(): torch.cuda.set_device(device_id)
writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval")) if rank == 0 else None
if pitch_guidance:
train_dataset = TextAudioLoaderMultiNSFsid(config.data, energy=energy_use)
collate_fn = TextAudioCollateMultiNSFsid(energy=energy_use)
else:
train_dataset = TextAudioLoader(config.data, energy=energy_use)
collate_fn = TextAudioCollate(energy=energy_use)
train_loader = tdata.DataLoader(train_dataset, num_workers=4, shuffle=False, pin_memory=True, collate_fn=collate_fn, batch_sampler=DistributedBucketSampler(train_dataset, batch_size * n_gpus, [100, 200, 300, 400, 500, 600, 700, 800, 900], num_replicas=n_gpus, rank=rank, shuffle=True), persistent_workers=True, prefetch_factor=8)
net_g, net_d = Synthesizer(config.data.filter_length // 2 + 1, config.train.segment_size // config.data.hop_length, **config.model, use_f0=pitch_guidance, sr=sample_rate, vocoder=vocoder, checkpointing=checkpointing, energy=energy_use), MultiPeriodDiscriminator(version, config.model.use_spectral_norm, checkpointing=checkpointing)
net_g, net_d = (net_g.cuda(device_id), net_d.cuda(device_id)) if torch.cuda.is_available() else (net_g.to(device), net_d.to(device))
optimizer_optim = torch.optim.AdamW if optimizer_choice == "AdamW" else torch.optim.RAdam
optim_g, optim_d = optimizer_optim(net_g.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps), optimizer_optim(net_d.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps)
if device.type != "ocl": net_g, net_d = (DDP(net_g, device_ids=[device_id]), DDP(net_d, device_ids=[device_id])) if torch.cuda.is_available() else (DDP(net_g), DDP(net_d))
try:
logger.info(translations["start_training"])
_, _, _, epoch_str = load_checkpoint(logger, (os.path.join(experiment_dir, "D_latest.pth") if save_only_latest else latest_checkpoint_path(experiment_dir, "D_*.pth")), net_d, optim_d)
_, _, _, epoch_str = load_checkpoint(logger, (os.path.join(experiment_dir, "G_latest.pth") if save_only_latest else latest_checkpoint_path(experiment_dir, "G_*.pth")), net_g, optim_g)
epoch_str += 1
global_step = (epoch_str - 1) * len(train_loader)
except:
epoch_str, global_step = 1, 0
verify = main_configs.get("pretrain_verify_shape", True)
strict = main_configs.get("pretrain_strict", True)
if pretrainG != "" and pretrainG != "None":
if rank == 0:
if verify: verify_checkpoint_shapes(pretrainG, net_g)
logger.info(translations["import_pretrain"].format(dg="G", pretrain=pretrainG))
ckptG = torch.load(pretrainG, map_location="cpu", weights_only=True)["model"]
net_g.module.load_state_dict(ckptG, strict=strict) if hasattr(net_g, "module") else net_g.load_state_dict(ckptG, strict=strict)
else: logger.warning(translations["not_using_pretrain"].format(dg="G"))
if pretrainD != "" and pretrainD != "None":
if rank == 0:
if verify: verify_checkpoint_shapes(pretrainD, net_d)
logger.info(translations["import_pretrain"].format(dg="D", pretrain=pretrainD))
ckptD = torch.load(pretrainD, map_location="cpu", weights_only=True)["model"]
net_d.module.load_state_dict(ckptD, strict=strict) if hasattr(net_d, "module") else net_d.load_state_dict(ckptD, strict=strict)
else: logger.warning(translations["not_using_pretrain"].format(dg="D"))
scheduler_g, scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2), torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2)
scaler = GradScaler(device=device, enabled=main_config.is_half and device.type == "cuda")
optim_g.step(); optim_d.step()
cache = []
def to_device(x):
return x.cuda(device_id, non_blocking=True) if device.type == "cuda" else x.to(device)
for info in train_loader:
reference = (to_device(info[0]), to_device(info[1]))
if pitch_guidance:
reference += (to_device(info[2]), to_device(info[3]), to_device(info[8]))
reference += (to_device(info[9]),) if energy_use else (None,)
else:
reference += (None, None, to_device(info[6]))
reference += (to_device(info[7]),) if energy_use else (None,)
break
for epoch in range(epoch_str, total_epoch + 1):
train_and_evaluate(rank, epoch, config, [net_g, net_d], [optim_g, optim_d], scaler, train_loader, writer_eval, cache, custom_save_every_weights, custom_total_epoch, device, device_id, reference, model_author, vocoder, energy_use)
scheduler_g.step(); scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, scaler, train_loader, writer, cache, custom_save_every_weights, custom_total_epoch, device, device_id, reference, model_author, vocoder, energy_use):
global global_step, lowest_value, loss_disc, consecutive_increases_gen, consecutive_increases_disc
if epoch == 1:
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
last_loss_gen_all, consecutive_increases_gen, consecutive_increases_disc = 0.0, 0, 0
net_g, net_d = nets
optim_g, optim_d = optims
train_loader.batch_sampler.set_epoch(epoch)
net_g.train(); net_d.train()
if device.type == "cuda" and cache_data_in_gpu:
data_iterator = cache
if cache == []:
for batch_idx, info in enumerate(train_loader):
cache.append((batch_idx, [tensor.cuda(device_id, non_blocking=True) for tensor in info]))
else: shuffle(cache)
elif device.type == "ocl" and cache_data_in_gpu:
data_iterator = cache
if cache == []:
for batch_idx, info in enumerate(train_loader):
cache.append((batch_idx, [tensor.to(device_id, non_blocking=True) for tensor in info]))
else: shuffle(cache)
else: data_iterator = enumerate(train_loader)
epoch_recorder = EpochRecorder()
autocast_enabled = main_config.is_half and device.type == "cuda"
autocast_device = "cpu" if str(device.type).startswith("ocl") else device.type
autocast_dtype = torch.float32 if not autocast_enabled else (torch.bfloat16 if main_config.brain else torch.float16)
with tqdm(total=len(train_loader), leave=False) as pbar:
for batch_idx, info in data_iterator:
if device.type == "cuda" and not cache_data_in_gpu: info = [tensor.cuda(device_id, non_blocking=True) for tensor in info]
elif device.type == "ocl" and not cache_data_in_gpu: info = [tensor.to(device_id, non_blocking=True) for tensor in info]
else: info = [tensor.to(device) for tensor in info]
phone, phone_lengths = info[0], info[1]
if pitch_guidance:
pitch, pitchf = info[2], info[3]
spec, spec_lengths, wave, sid = info[4], info[5], info[6], info[8]
energy = info[9] if energy_use else None
else:
pitch = pitchf = None
spec, spec_lengths, wave, sid = info[2], info[3], info[4], info[6]
energy = info[7] if energy_use else None
with autocast(autocast_device , enabled=autocast_enabled, dtype=autocast_dtype):
y_hat, ids_slice, _, z_mask, (_, z_p, m_p, logs_p, _, logs_q) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid, energy)
mel = spec_to_mel_torch(spec, config.data.filter_length, config.data.n_mel_channels, config.data.sample_rate, config.data.mel_fmin, config.data.mel_fmax)
y_mel = slice_segments(mel, ids_slice, config.train.segment_size // config.data.hop_length, dim=3)
with autocast(autocast_device, enabled=autocast_enabled, dtype=autocast_dtype):
y_hat_mel = mel_spectrogram_torch(y_hat.float().squeeze(1), config.data.filter_length, config.data.n_mel_channels, config.data.sample_rate, config.data.hop_length, config.data.win_length, config.data.mel_fmin, config.data.mel_fmax)
wave = slice_segments(wave, ids_slice * config.data.hop_length, config.train.segment_size, dim=3)
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
with autocast(autocast_device, enabled=autocast_enabled, dtype=autocast_dtype):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
optim_d.zero_grad()
scaler.scale(loss_disc).backward()
scaler.unscale_(optim_d)
grad_norm_d = clip_grad_value(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(autocast_device, enabled=autocast_enabled, dtype=autocast_dtype):
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
with autocast(autocast_device, enabled=autocast_enabled, dtype=autocast_dtype):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel
loss_kl = (kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl)
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
if loss_gen_all < lowest_value["value"]: lowest_value = {"step": global_step, "value": loss_gen_all, "epoch": epoch}
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = clip_grad_value(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0 and global_step % config.train.log_interval == 0:
if loss_mel > 75: loss_mel = 75
if loss_kl > 9: loss_kl = 9
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc, "learning_rate": optim_g.param_groups[0]["lr"], "grad/norm_d": grad_norm_d, "grad/norm_g": grad_norm_g, "loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl}
scalar_dict.update({f"loss/g/{i}": v for i, v in enumerate(losses_gen)})
scalar_dict.update({f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)})
scalar_dict.update({f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)})
with torch.no_grad():
o, *_ = net_g.module.infer(*reference) if hasattr(net_g, "module") else net_g.infer(*reference)
summarize(writer=writer, global_step=global_step, images={"slice/mel_org": plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), "slice/mel_gen": plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), "all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy())}, scalars=scalar_dict, audios={f"gen/audio_{global_step:07d}": o[0, :, :]}, audio_sample_rate=config.data.sample_rate)
global_step += 1
pbar.update(1)
with torch.no_grad():
clear_gpu_cache()
def check_overtraining(smoothed_loss_history, threshold, epsilon=0.004):
if len(smoothed_loss_history) < threshold + 1: return False
for i in range(-threshold, -1):
if smoothed_loss_history[i + 1] > smoothed_loss_history[i]: return True
if abs(smoothed_loss_history[i + 1] - smoothed_loss_history[i]) >= epsilon: return False
return True
def update_exponential_moving_average(smoothed_loss_history, new_value, smoothing=0.987):
smoothed_value = new_value if not smoothed_loss_history else (smoothing * smoothed_loss_history[-1] + (1 - smoothing) * new_value)
smoothed_loss_history.append(smoothed_value)
return smoothed_value
def save_to_json(file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history):
with open(file_path, "w") as f:
json.dump({"loss_disc_history": loss_disc_history, "smoothed_loss_disc_history": smoothed_loss_disc_history, "loss_gen_history": loss_gen_history, "smoothed_loss_gen_history": smoothed_loss_gen_history}, f)
model_add, model_del = [], []
done = False
if rank == 0:
if epoch % save_every_epoch == False:
checkpoint_suffix = f"{'latest' if save_only_latest else global_step}.pth"
save_checkpoint(logger, net_g, optim_g, config.train.learning_rate, epoch, os.path.join(experiment_dir, "G_" + checkpoint_suffix))
save_checkpoint(logger, net_d, optim_d, config.train.learning_rate, epoch, os.path.join(experiment_dir, "D_" + checkpoint_suffix))
if custom_save_every_weights: model_add.append(os.path.join(main_configs["weights_path"], f"{model_name}_{epoch}e_{global_step}s.pth"))
if overtraining_detector and epoch > 1:
current_loss_disc, current_loss_gen = float(loss_disc), float(lowest_value["value"])
loss_disc_history.append(current_loss_disc)
loss_gen_history.append(current_loss_gen)
smoothed_value_disc = update_exponential_moving_average(smoothed_loss_disc_history, current_loss_disc)
smoothed_value_gen = update_exponential_moving_average(smoothed_loss_gen_history, current_loss_gen)
is_overtraining_disc = check_overtraining(smoothed_loss_disc_history, overtraining_threshold * 2)
is_overtraining_gen = check_overtraining(smoothed_loss_gen_history, overtraining_threshold, 0.01)
consecutive_increases_disc = (consecutive_increases_disc + 1) if is_overtraining_disc else 0
consecutive_increases_gen = (consecutive_increases_gen + 1) if is_overtraining_gen else 0
if epoch % save_every_epoch == 0: save_to_json(training_file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history)
if (is_overtraining_gen and consecutive_increases_gen == overtraining_threshold or is_overtraining_disc and consecutive_increases_disc == (overtraining_threshold * 2)):
logger.info(translations["overtraining_find"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
done = True
else:
logger.info(translations["best_epoch"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
for file in glob.glob(os.path.join(main_configs["weights_path"], f"{model_name}_*e_*s_best_epoch.pth")):
model_del.append(file)
model_add.append(os.path.join(main_configs["weights_path"], f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth"))
if epoch >= custom_total_epoch:
logger.info(translations["success_training"].format(epoch=epoch, global_step=global_step, loss_gen_all=round(loss_gen_all.item(), 3)))
logger.info(translations["training_info"].format(lowest_value_rounded=round(float(lowest_value["value"]), 3), lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step']))
model_add.append(os.path.join(main_configs["weights_path"], f"{model_name}_{epoch}e_{global_step}s.pth"))
done = True
for m in model_del:
os.remove(m)
if model_add:
ckpt = (net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict())
for m in model_add:
extract_model(ckpt=ckpt, sr=sample_rate, pitch_guidance=pitch_guidance == True, name=model_name, model_path=m, epoch=epoch, step=global_step, version=version, hps=hps, model_author=model_author, vocoder=vocoder, energy_use=energy_use)
lowest_value_rounded = round(float(lowest_value["value"]), 3)
if epoch > 1 and overtraining_detector: logger.info(translations["model_training_info"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'], remaining_epochs_gen=(overtraining_threshold - consecutive_increases_gen), remaining_epochs_disc=((overtraining_threshold * 2) - consecutive_increases_disc), smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
elif epoch > 1 and overtraining_detector == False: logger.info(translations["model_training_info_2"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step']))
else: logger.info(translations["model_training_info_3"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record()))
logger.debug(f"loss_gen_all: {loss_gen_all} loss_gen: {loss_gen} loss_fm: {loss_fm} loss_mel: {loss_mel} loss_kl: {loss_kl}")
last_loss_gen_all = loss_gen_all
if done:
pid_file_path = os.path.join(experiment_dir, "config.json")
with open(pid_file_path, "r") as pid_file:
pid_data = json.load(pid_file)
with open(pid_file_path, "w") as pid_file:
pid_data.pop("process_pids", None)
json.dump(pid_data, pid_file, indent=4)
if os.path.exists(os.path.join(experiment_dir, "train_pid.txt")): os.remove(os.path.join(experiment_dir, "train_pid.txt"))
os._exit(0)
with torch.no_grad():
clear_gpu_cache()
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
main() |