RVC-GUI / main /app /core /training.py
AnhP's picture
Upload 170 files
1e4a2ab verified
raw
history blame
11.7 kB
import os
import sys
import time
import shutil
import codecs
import threading
import subprocess
sys.path.append(os.getcwd())
from main.tools import huggingface
from main.app.core.ui import gr_info, gr_warning
from main.app.variables import python, translations, configs
def if_done(done, p):
while 1:
if p.poll() is None: time.sleep(0.5)
else: break
done[0] = True
def log_read(done, name):
log_file = os.path.join(configs["logs_path"], "app.log")
f = open(log_file, "w", encoding="utf-8")
f.close()
while 1:
with open(log_file, "r", encoding="utf-8") as f:
yield "".join(line for line in f.readlines() if "DEBUG" not in line and name in line and line.strip() != "")
time.sleep(1)
if done[0]: break
with open(log_file, "r", encoding="utf-8") as f:
log = "".join(line for line in f.readlines() if "DEBUG" not in line and line.strip() != "")
yield log
def create_dataset(input_audio, output_dataset, clean_dataset, clean_strength, separator_reverb, kim_vocals_version, overlap, segments_size, denoise_mdx, skip, skip_start, skip_end, hop_length, batch_size, sample_rate):
version = 1 if kim_vocals_version == "Version-1" else 2
gr_info(translations["start"].format(start=translations["create"]))
p = subprocess.Popen(f'{python} {configs["create_dataset_path"]} --input_audio "{input_audio}" --output_dataset "{output_dataset}" --clean_dataset {clean_dataset} --clean_strength {clean_strength} --separator_reverb {separator_reverb} --kim_vocal_version {version} --overlap {overlap} --segments_size {segments_size} --mdx_hop_length {hop_length} --mdx_batch_size {batch_size} --denoise_mdx {denoise_mdx} --skip {skip} --skip_start_audios "{skip_start}" --skip_end_audios "{skip_end}" --sample_rate {sample_rate}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
for log in log_read(done, "create_dataset"):
yield log
def preprocess(model_name, sample_rate, cpu_core, cut_preprocess, process_effects, dataset, clean_dataset, clean_strength):
sr = int(float(sample_rate.rstrip("k")) * 1000)
if not model_name: return gr_warning(translations["provide_name"])
if not os.path.exists(dataset) or not any(f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3")) for f in os.listdir(dataset) if os.path.isfile(os.path.join(dataset, f))): return gr_warning(translations["not_found_data"])
model_dir = os.path.join(configs["logs_path"], model_name)
if os.path.exists(model_dir): shutil.rmtree(model_dir, ignore_errors=True)
p = subprocess.Popen(f'{python} {configs["preprocess_path"]} --model_name "{model_name}" --dataset_path "{dataset}" --sample_rate {sr} --cpu_cores {cpu_core} --cut_preprocess {cut_preprocess} --process_effects {process_effects} --clean_dataset {clean_dataset} --clean_strength {clean_strength}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
os.makedirs(model_dir, exist_ok=True)
for log in log_read(done, "preprocess"):
yield log
def extract(model_name, version, method, pitch_guidance, hop_length, cpu_cores, gpu, sample_rate, embedders, custom_embedders, onnx_f0_mode, embedders_mode, f0_autotune, f0_autotune_strength, hybrid_method, rms_extract):
f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)
sr = int(float(sample_rate.rstrip("k")) * 1000)
if not model_name: return gr_warning(translations["provide_name"])
model_dir = os.path.join(configs["logs_path"], model_name)
try:
if not any(os.path.isfile(os.path.join(model_dir, "sliced_audios", f)) for f in os.listdir(os.path.join(model_dir, "sliced_audios"))) or not any(os.path.isfile(os.path.join(model_dir, "sliced_audios_16k", f)) for f in os.listdir(os.path.join(model_dir, "sliced_audios_16k"))): return gr_warning(translations["not_found_data_preprocess"])
except:
return gr_warning(translations["not_found_data_preprocess"])
p = subprocess.Popen(f'{python} {configs["extract_path"]} --model_name "{model_name}" --rvc_version {version} --f0_method {f0method} --pitch_guidance {pitch_guidance} --hop_length {hop_length} --cpu_cores {cpu_cores} --gpu {gpu} --sample_rate {sr} --embedder_model {embedder_model} --f0_onnx {onnx_f0_mode} --embedders_mode {embedders_mode} --f0_autotune {f0_autotune} --f0_autotune_strength {f0_autotune_strength} --rms_extract {rms_extract}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
os.makedirs(model_dir, exist_ok=True)
for log in log_read(done, "extract"):
yield log
def create_index(model_name, rvc_version, index_algorithm):
if not model_name: return gr_warning(translations["provide_name"])
model_dir = os.path.join(configs["logs_path"], model_name)
try:
if not any(os.path.isfile(os.path.join(model_dir, f"{rvc_version}_extracted", f)) for f in os.listdir(os.path.join(model_dir, f"{rvc_version}_extracted"))): return gr_warning(translations["not_found_data_extract"])
except:
return gr_warning(translations["not_found_data_extract"])
p = subprocess.Popen(f'{python} {configs["create_index_path"]} --model_name "{model_name}" --rvc_version {rvc_version} --index_algorithm {index_algorithm}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
os.makedirs(model_dir, exist_ok=True)
for log in log_read(done, "create_index"):
yield log
def training(model_name, rvc_version, save_every_epoch, save_only_latest, save_every_weights, total_epoch, sample_rate, batch_size, gpu, pitch_guidance, not_pretrain, custom_pretrained, pretrain_g, pretrain_d, detector, threshold, clean_up, cache, model_author, vocoder, checkpointing, deterministic, benchmark, optimizer, energy_use):
sr = int(float(sample_rate.rstrip("k")) * 1000)
if not model_name: return gr_warning(translations["provide_name"])
model_dir = os.path.join(configs["logs_path"], model_name)
if os.path.exists(os.path.join(model_dir, "train_pid.txt")): os.remove(os.path.join(model_dir, "train_pid.txt"))
try:
if not any(os.path.isfile(os.path.join(model_dir, f"{rvc_version}_extracted", f)) for f in os.listdir(os.path.join(model_dir, f"{rvc_version}_extracted"))): return gr_warning(translations["not_found_data_extract"])
except:
return gr_warning(translations["not_found_data_extract"])
if not not_pretrain:
if not custom_pretrained:
pretrain_dir = configs["pretrained_v2_path"] if rvc_version == 'v2' else configs["pretrained_v1_path"]
download_version = codecs.decode(f"uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cergenvarq_i{'2' if rvc_version == 'v2' else '1'}/", "rot13")
pretrained_selector = {
True: {
32000: ("f0G32k.pth", "f0D32k.pth"),
40000: ("f0G40k.pth", "f0D40k.pth"),
48000: ("f0G48k.pth", "f0D48k.pth")
},
False: {
32000: ("G32k.pth", "D32k.pth"),
40000: ("G40k.pth", "D40k.pth"),
48000: ("G48k.pth", "D48k.pth")
}
}
pg2, pd2 = "", ""
pg, pd = pretrained_selector[pitch_guidance][sr]
if energy_use: pg2, pd2 = pg2 + "ENERGY_", pd2 + "ENERGY_"
if vocoder != 'Default': pg2, pd2 = pg2 + vocoder + "_", pd2 + vocoder + "_"
pg2, pd2 = pg2 + pg, pd2 + pd
pretrained_G, pretrained_D = (
os.path.join(
pretrain_dir,
pg2
),
os.path.join(
pretrain_dir,
pd2
)
)
try:
if not os.path.exists(pretrained_G):
gr_info(translations["download_pretrained"].format(dg="G", rvc_version=rvc_version))
huggingface.HF_download_file(
"".join(
[
download_version,
pg2
]
),
os.path.join(
pretrain_dir,
pg2
)
)
if not os.path.exists(pretrained_D):
gr_info(translations["download_pretrained"].format(dg="D", rvc_version=rvc_version))
huggingface.HF_download_file(
"".join(
[
download_version,
pd2
]
),
os.path.join(
pretrain_dir,
pd2
)
)
except:
gr_warning(translations["not_use_pretrain_error_download"])
pretrained_G = pretrained_D = None
else:
if not pretrain_g: return gr_warning(translations["provide_pretrained"].format(dg="G"))
if not pretrain_d: return gr_warning(translations["provide_pretrained"].format(dg="D"))
pg2, pd2 = pretrain_g, pretrain_d
pretrained_G, pretrained_D = (
(os.path.join(configs["pretrained_custom_path"], pg2) if not os.path.exists(pg2) else pg2),
(os.path.join(configs["pretrained_custom_path"], pd2) if not os.path.exists(pd2) else pd2)
)
if not os.path.exists(pretrained_G): return gr_warning(translations["not_found_pretrain"].format(dg="G"))
if not os.path.exists(pretrained_D): return gr_warning(translations["not_found_pretrain"].format(dg="D"))
else:
pretrained_G = pretrained_D = None
gr_warning(translations["not_use_pretrain"])
gr_info(translations["start"].format(start=translations["training"]))
p = subprocess.Popen(f'{python} {configs["train_path"]} --model_name "{model_name}" --rvc_version {rvc_version} --save_every_epoch {save_every_epoch} --save_only_latest {save_only_latest} --save_every_weights {save_every_weights} --total_epoch {total_epoch} --sample_rate {sr} --batch_size {batch_size} --gpu {gpu} --pitch_guidance {pitch_guidance} --overtraining_detector {detector} --overtraining_threshold {threshold} --cleanup {clean_up} --cache_data_in_gpu {cache} --g_pretrained_path "{pretrained_G}" --d_pretrained_path "{pretrained_D}" --model_author "{model_author}" --vocoder "{vocoder}" --checkpointing {checkpointing} --deterministic {deterministic} --benchmark {benchmark} --optimizer {optimizer} --energy_use {energy_use}', shell=True)
done = [False]
with open(os.path.join(model_dir, "train_pid.txt"), "w") as pid_file:
pid_file.write(str(p.pid))
threading.Thread(target=if_done, args=(done, p)).start()
for log in log_read(done, "train"):
lines = log.splitlines()
if len(lines) > 100: log = "\n".join(lines[-100:])
yield log