File size: 11,650 Bytes
1e4a2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import sys
import time
import shutil
import codecs
import threading
import subprocess

sys.path.append(os.getcwd())

from main.tools import huggingface
from main.app.core.ui import gr_info, gr_warning
from main.app.variables import python, translations, configs

def if_done(done, p):
    while 1:
        if p.poll() is None: time.sleep(0.5)
        else: break

    done[0] = True

def log_read(done, name):
    log_file = os.path.join(configs["logs_path"], "app.log")

    f = open(log_file, "w", encoding="utf-8")
    f.close()

    while 1:
        with open(log_file, "r", encoding="utf-8") as f:
            yield "".join(line for line in f.readlines() if "DEBUG" not in line and name in line and line.strip() != "")

        time.sleep(1)
        if done[0]: break

    with open(log_file, "r", encoding="utf-8") as f:
        log = "".join(line for line in f.readlines() if "DEBUG" not in line and line.strip() != "")

    yield log

def create_dataset(input_audio, output_dataset, clean_dataset, clean_strength, separator_reverb, kim_vocals_version, overlap, segments_size, denoise_mdx, skip, skip_start, skip_end, hop_length, batch_size, sample_rate):
    version = 1 if kim_vocals_version == "Version-1" else 2
    gr_info(translations["start"].format(start=translations["create"]))

    p = subprocess.Popen(f'{python} {configs["create_dataset_path"]} --input_audio "{input_audio}" --output_dataset "{output_dataset}" --clean_dataset {clean_dataset} --clean_strength {clean_strength} --separator_reverb {separator_reverb} --kim_vocal_version {version} --overlap {overlap} --segments_size {segments_size} --mdx_hop_length {hop_length} --mdx_batch_size {batch_size} --denoise_mdx {denoise_mdx} --skip {skip} --skip_start_audios "{skip_start}" --skip_end_audios "{skip_end}" --sample_rate {sample_rate}', shell=True)
    done = [False]

    threading.Thread(target=if_done, args=(done, p)).start()

    for log in log_read(done, "create_dataset"):
        yield log

def preprocess(model_name, sample_rate, cpu_core, cut_preprocess, process_effects, dataset, clean_dataset, clean_strength):
    sr = int(float(sample_rate.rstrip("k")) * 1000)

    if not model_name: return gr_warning(translations["provide_name"])
    if not os.path.exists(dataset) or not any(f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3")) for f in os.listdir(dataset) if os.path.isfile(os.path.join(dataset, f))): return gr_warning(translations["not_found_data"])
    
    model_dir = os.path.join(configs["logs_path"], model_name)
    if os.path.exists(model_dir): shutil.rmtree(model_dir, ignore_errors=True)

    p = subprocess.Popen(f'{python} {configs["preprocess_path"]} --model_name "{model_name}" --dataset_path "{dataset}" --sample_rate {sr} --cpu_cores {cpu_core} --cut_preprocess {cut_preprocess} --process_effects {process_effects} --clean_dataset {clean_dataset} --clean_strength {clean_strength}', shell=True)
    done = [False]

    threading.Thread(target=if_done, args=(done, p)).start()
    os.makedirs(model_dir, exist_ok=True)

    for log in log_read(done, "preprocess"):
        yield log

def extract(model_name, version, method, pitch_guidance, hop_length, cpu_cores, gpu, sample_rate, embedders, custom_embedders, onnx_f0_mode, embedders_mode, f0_autotune, f0_autotune_strength, hybrid_method, rms_extract):
    f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)
    sr = int(float(sample_rate.rstrip("k")) * 1000)

    if not model_name: return gr_warning(translations["provide_name"])
    model_dir = os.path.join(configs["logs_path"], model_name)

    try:
        if not any(os.path.isfile(os.path.join(model_dir, "sliced_audios", f)) for f in os.listdir(os.path.join(model_dir, "sliced_audios"))) or not any(os.path.isfile(os.path.join(model_dir, "sliced_audios_16k", f)) for f in os.listdir(os.path.join(model_dir, "sliced_audios_16k"))): return gr_warning(translations["not_found_data_preprocess"])
    except:
        return gr_warning(translations["not_found_data_preprocess"])
    
    p = subprocess.Popen(f'{python} {configs["extract_path"]} --model_name "{model_name}" --rvc_version {version} --f0_method {f0method} --pitch_guidance {pitch_guidance} --hop_length {hop_length} --cpu_cores {cpu_cores} --gpu {gpu} --sample_rate {sr} --embedder_model {embedder_model} --f0_onnx {onnx_f0_mode} --embedders_mode {embedders_mode} --f0_autotune {f0_autotune} --f0_autotune_strength {f0_autotune_strength} --rms_extract {rms_extract}', shell=True)
    done = [False]

    threading.Thread(target=if_done, args=(done, p)).start()
    os.makedirs(model_dir, exist_ok=True)

    for log in log_read(done, "extract"):
        yield log

def create_index(model_name, rvc_version, index_algorithm):
    if not model_name: return gr_warning(translations["provide_name"])
    model_dir = os.path.join(configs["logs_path"], model_name)
    
    try:
        if not any(os.path.isfile(os.path.join(model_dir, f"{rvc_version}_extracted", f)) for f in os.listdir(os.path.join(model_dir, f"{rvc_version}_extracted"))): return gr_warning(translations["not_found_data_extract"])
    except:
        return gr_warning(translations["not_found_data_extract"])
    
    p = subprocess.Popen(f'{python} {configs["create_index_path"]} --model_name "{model_name}" --rvc_version {rvc_version} --index_algorithm {index_algorithm}', shell=True)
    done = [False]

    threading.Thread(target=if_done, args=(done, p)).start()
    os.makedirs(model_dir, exist_ok=True)

    for log in log_read(done, "create_index"):
        yield log

def training(model_name, rvc_version, save_every_epoch, save_only_latest, save_every_weights, total_epoch, sample_rate, batch_size, gpu, pitch_guidance, not_pretrain, custom_pretrained, pretrain_g, pretrain_d, detector, threshold, clean_up, cache, model_author, vocoder, checkpointing, deterministic, benchmark, optimizer, energy_use):
    sr = int(float(sample_rate.rstrip("k")) * 1000)
    if not model_name: return gr_warning(translations["provide_name"])

    model_dir = os.path.join(configs["logs_path"], model_name)
    if os.path.exists(os.path.join(model_dir, "train_pid.txt")): os.remove(os.path.join(model_dir, "train_pid.txt"))
    
    try:
        if not any(os.path.isfile(os.path.join(model_dir, f"{rvc_version}_extracted", f)) for f in os.listdir(os.path.join(model_dir, f"{rvc_version}_extracted"))): return gr_warning(translations["not_found_data_extract"])
    except:
        return gr_warning(translations["not_found_data_extract"])
    
    if not not_pretrain:
        if not custom_pretrained: 
            pretrain_dir = configs["pretrained_v2_path"] if rvc_version == 'v2' else configs["pretrained_v1_path"]
            download_version = codecs.decode(f"uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cergenvarq_i{'2' if rvc_version == 'v2' else '1'}/", "rot13")

            pretrained_selector = {
                True: {
                    32000: ("f0G32k.pth", "f0D32k.pth"), 
                    40000: ("f0G40k.pth", "f0D40k.pth"), 
                    48000: ("f0G48k.pth", "f0D48k.pth")
                }, 
                False: {
                    32000: ("G32k.pth", "D32k.pth"), 
                    40000: ("G40k.pth", "D40k.pth"), 
                    48000: ("G48k.pth", "D48k.pth")
                }
            }

            pg2, pd2 = "", ""
            pg, pd = pretrained_selector[pitch_guidance][sr]

            if energy_use: pg2, pd2 = pg2 + "ENERGY_", pd2 + "ENERGY_"
            if vocoder != 'Default': pg2, pd2 = pg2 + vocoder + "_", pd2 + vocoder + "_"

            pg2, pd2 = pg2 + pg, pd2 + pd
            pretrained_G, pretrained_D = (
                os.path.join(
                    pretrain_dir,
                    pg2
                ), 
                os.path.join(
                    pretrain_dir,
                    pd2
                )
            )

            try:
                if not os.path.exists(pretrained_G):
                    gr_info(translations["download_pretrained"].format(dg="G", rvc_version=rvc_version))
                    huggingface.HF_download_file(
                        "".join(
                            [
                                download_version, 
                                pg2
                            ]
                        ),
                        os.path.join(
                            pretrain_dir,
                            pg2
                        )
                    )
                        
                if not os.path.exists(pretrained_D):
                    gr_info(translations["download_pretrained"].format(dg="D", rvc_version=rvc_version))
                    huggingface.HF_download_file(
                        "".join(
                            [
                                download_version, 
                                pd2
                            ]
                        ), 
                        os.path.join(
                            pretrain_dir,
                            pd2
                        )
                    )
            except:
                gr_warning(translations["not_use_pretrain_error_download"])
                pretrained_G = pretrained_D = None
        else:
            if not pretrain_g: return gr_warning(translations["provide_pretrained"].format(dg="G"))
            if not pretrain_d: return gr_warning(translations["provide_pretrained"].format(dg="D"))
            
            pg2, pd2 = pretrain_g, pretrain_d
            pretrained_G, pretrained_D = (
                (os.path.join(configs["pretrained_custom_path"], pg2) if not os.path.exists(pg2) else pg2), 
                (os.path.join(configs["pretrained_custom_path"], pd2) if not os.path.exists(pd2) else pd2)
            )

            if not os.path.exists(pretrained_G): return gr_warning(translations["not_found_pretrain"].format(dg="G"))
            if not os.path.exists(pretrained_D): return gr_warning(translations["not_found_pretrain"].format(dg="D"))
    else: 
        pretrained_G = pretrained_D = None
        gr_warning(translations["not_use_pretrain"])

    gr_info(translations["start"].format(start=translations["training"]))

    p = subprocess.Popen(f'{python} {configs["train_path"]} --model_name "{model_name}" --rvc_version {rvc_version} --save_every_epoch {save_every_epoch} --save_only_latest {save_only_latest} --save_every_weights {save_every_weights} --total_epoch {total_epoch} --sample_rate {sr} --batch_size {batch_size} --gpu {gpu} --pitch_guidance {pitch_guidance} --overtraining_detector {detector} --overtraining_threshold {threshold} --cleanup {clean_up} --cache_data_in_gpu {cache} --g_pretrained_path "{pretrained_G}" --d_pretrained_path "{pretrained_D}" --model_author "{model_author}" --vocoder "{vocoder}" --checkpointing {checkpointing} --deterministic {deterministic} --benchmark {benchmark} --optimizer {optimizer} --energy_use {energy_use}', shell=True)
    done = [False]

    with open(os.path.join(model_dir, "train_pid.txt"), "w") as pid_file:
        pid_file.write(str(p.pid))

    threading.Thread(target=if_done, args=(done, p)).start()

    for log in log_read(done, "train"):
        lines = log.splitlines()
        if len(lines) > 100: log = "\n".join(lines[-100:])
        yield log