File size: 3,966 Bytes
1cc60af
b76daae
2452398
a05a2de
1cc60af
2452398
1cc60af
2452398
b76daae
1cc60af
5825182
 
2452398
1cc60af
5825182
 
1cc60af
5825182
 
17a347d
5825182
 
 
6e6388e
5825182
1cc60af
5825182
1cc60af
a05a2de
 
 
c255694
 
 
17a347d
 
2452398
17a347d
 
5825182
 
 
6e6388e
5825182
6e6388e
5825182
6e6388e
a05a2de
 
 
c255694
 
 
17a347d
 
2452398
 
1cc60af
 
 
 
 
 
 
b76daae
1cc60af
 
 
2452398
1cc60af
 
5825182
55f0dce
1cc60af
 
 
 
 
6e6388e
1cc60af
 
 
 
 
 
 
 
 
 
 
 
b76daae
1cc60af
2452398
 
 
1cc60af
2452398
 
 
1cc60af
 
2452398
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import pandas as pd

from base.attribute import Attribute
from base.skill import Skill, DotDamage, NpcDamage, PetDamage
from utils.parser import School, Parser, CALCULATE_COLUMNS

DAMAGE_COLUMNS = ["damage", "critical_damage", "critical_strike", "expected_damage"]


def filter_status(status, school: School):
    buffs = []
    for buff_id, buff_level, buff_stack in status:
        buff = school.buffs[buff_id]
        if buff.activate:
            buffs.append(buff)

    return buffs


def add_buffs(current_buffs, snapshot_buffs, target_buffs, attribute: Attribute, skill: Skill):
    if not snapshot_buffs:
        for buff in current_buffs:
            buff.add_all(attribute, skill)
    elif isinstance(skill, DotDamage):
        for buff in snapshot_buffs:
            buff.add_dot(attribute, skill, True)
        for buff in current_buffs:
            buff.add_dot(attribute, skill, False)
    elif isinstance(skill, NpcDamage):
        for buff in snapshot_buffs:
            buff.add_all(attribute, skill)
    elif isinstance(skill, PetDamage):
        for buff in snapshot_buffs:
            buff.add_all(attribute, skill)
    for buff in target_buffs:
        buff.add_all(attribute, skill)


def sub_buffs(current_buffs, snapshot_buffs, target_buffs, attribute: Attribute, skill: Skill):
    if not snapshot_buffs:
        for buff in current_buffs:
            buff.sub_all(attribute, skill)
    elif isinstance(skill, DotDamage):
        for buff in snapshot_buffs:
            buff.sub_dot(attribute, skill, True)
        for buff in current_buffs:
            buff.sub_dot(attribute, skill, False)
    elif isinstance(skill, NpcDamage):
        for buff in snapshot_buffs:
            buff.sub_all(attribute, skill)
    elif isinstance(skill, PetDamage):
        for buff in snapshot_buffs:
            buff.sub_all(attribute, skill)
    for buff in target_buffs:
        buff.sub_all(attribute, skill)


def analyze_records(parser: Parser, duration: int, attribute: Attribute):
    records: pd.DataFrame = parser.current_records
    school = parser.current_school
    condition = (records.player_id == parser.current_player) & (records.time < duration)
    if parser.current_target:
        condition = condition & (records.target_id == parser.current_target)
    records = records[condition].copy()

    damage_columns = [(0 for _ in DAMAGE_COLUMNS)] * len(records)
    grad_attrs = list(attribute.grad_attrs)
    gradient_columns = [(0 for _ in grad_attrs)] * len(records)

    for row, indices in records.groupby(CALCULATE_COLUMNS).indices.items():
        skill_id, skill_level, skill_stack, current_status, target_status, snapshot_index = row
        skill: Skill = school.skills[skill_id]
        skill.skill_level, skill.skill_stack = skill_level, skill_stack

        current_buffs = filter_status(current_status, school)
        target_buffs = filter_status(target_status, school)
        if snapshot_index < 0:
            snapshot_buffs = tuple()
        else:
            snapshot_buffs = filter_status(records.loc[snapshot_index].current_status, school)

        add_buffs(current_buffs, snapshot_buffs, target_buffs, attribute, skill)
        damage_tuple = skill(attribute)
        gradient_tuple = analyze_gradients(skill, attribute)
        for index in indices:
            damage_columns[index] = damage_tuple
            gradient_columns[index] = gradient_tuple
        sub_buffs(current_buffs, snapshot_buffs, target_buffs, attribute, skill)

    records[DAMAGE_COLUMNS] = damage_columns
    records[grad_attrs] = gradient_columns

    return records


def analyze_gradients(skill, attribute):
    results = []
    for attr, value in attribute.grad_attrs.items():
        origin_value = getattr(attribute, attr)
        setattr(attribute, attr, origin_value + value)
        _, _, _, expected_damage = skill(attribute)
        results.append(expected_damage)
        setattr(attribute, attr, origin_value)
    return results