fifa_amrul / eda.py
AmrullahPasadi's picture
comit pertama
bbb165e
raw
history blame
2.05 kB
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
from PIL import Image
st.set_page_config(
page_title = 'FIFA 2022 - EDA',
layout = 'wide',
initial_sidebar_state='expanded'
)
#function Run eda
def run():
# Membuat Title
st.title('FIFA 2022 Player Rating Prediction')
# Membuat Sub Header
st.subheader('EDA untuk Analisa Dataset FIFA 2022')
# Menambahkan Gambar
image = Image.open('soccer.jpg')
st.image(image, caption='FIFA 2022')
# Menambahkan Deskripsi
st.write('Page ini dibuat oleh *Danu Purnomo*')
st.write('# Halo')
st.write('## Halo')
st.write('### Halo')
# Membuat Garis Lurus
st.markdown('---')
# Magic Syntax
'''
Pada page kali ini, penulis akan melakukan eksplorasi sederhana.
Dataset yang digunakan adalah dataset FIFA 2022.
Dataset ini berasal dari web sofifa.com.
'''
# Show DataFrame
data = pd.read_csv('https://raw.githubusercontent.com/ardhiraka/FSDS_Guidelines/master/p1/v3/w1/P1W1D1PM%20-%20Machine%20Learning%20Problem%20Framing.csv')
st.dataframe(data)
# Membuat Barplot
st.write('#### Plot AttackingWorkRate')
fig = plt.figure(figsize=(15, 5))
sns.countplot(x='AttackingWorkRate', data=data)
st.pyplot(fig)
# Membuat Histogram
st.write('#### Histogram of Rating')
fig = plt.figure(figsize=(15, 5))
sns.histplot(data['Overall'], bins=30, kde=True)
st.pyplot(fig)
# Membuat Histogram Berdasarkan Input User
st.write('#### Histogram berdasarkan input user')
pilihan = st.selectbox('Pilih column : ', ('Age', 'Weight', 'Height', 'ShootingTotal'))
fig = plt.figure(figsize=(15, 5))
sns.histplot(data[pilihan], bins=30, kde=True)
st.pyplot(fig)
# Membuat Plotly Plot
st.write('#### Plotly Plot - ValueEUR dengan Overall')
fig = px.scatter(data, x='ValueEUR', y='Overall', hover_data=['Name', 'Age'])
st.plotly_chart(fig)
if __name__ == '__main__':
run()