Spaces:
Sleeping
Sleeping
Commit
·
bbb165e
1
Parent(s):
03b5834
comit pertama
Browse files- eda.py +70 -0
- list_cat_cols.txt +1 -0
- list_num_cols.txt +1 -0
- main.py +9 -0
- model_encoder.pkl +3 -0
- model_lin_reg.pkl +3 -0
- model_scaler.pkl +3 -0
- prediction.py +83 -0
eda.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import plotly.express as px
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
st.set_page_config(
|
9 |
+
page_title = 'FIFA 2022 - EDA',
|
10 |
+
layout = 'wide',
|
11 |
+
initial_sidebar_state='expanded'
|
12 |
+
)
|
13 |
+
#function Run eda
|
14 |
+
def run():
|
15 |
+
# Membuat Title
|
16 |
+
st.title('FIFA 2022 Player Rating Prediction')
|
17 |
+
|
18 |
+
# Membuat Sub Header
|
19 |
+
st.subheader('EDA untuk Analisa Dataset FIFA 2022')
|
20 |
+
|
21 |
+
# Menambahkan Gambar
|
22 |
+
image = Image.open('soccer.jpg')
|
23 |
+
st.image(image, caption='FIFA 2022')
|
24 |
+
|
25 |
+
# Menambahkan Deskripsi
|
26 |
+
st.write('Page ini dibuat oleh *Danu Purnomo*')
|
27 |
+
st.write('# Halo')
|
28 |
+
st.write('## Halo')
|
29 |
+
st.write('### Halo')
|
30 |
+
|
31 |
+
# Membuat Garis Lurus
|
32 |
+
st.markdown('---')
|
33 |
+
|
34 |
+
# Magic Syntax
|
35 |
+
'''
|
36 |
+
Pada page kali ini, penulis akan melakukan eksplorasi sederhana.
|
37 |
+
Dataset yang digunakan adalah dataset FIFA 2022.
|
38 |
+
Dataset ini berasal dari web sofifa.com.
|
39 |
+
'''
|
40 |
+
|
41 |
+
# Show DataFrame
|
42 |
+
data = pd.read_csv('https://raw.githubusercontent.com/ardhiraka/FSDS_Guidelines/master/p1/v3/w1/P1W1D1PM%20-%20Machine%20Learning%20Problem%20Framing.csv')
|
43 |
+
st.dataframe(data)
|
44 |
+
|
45 |
+
# Membuat Barplot
|
46 |
+
st.write('#### Plot AttackingWorkRate')
|
47 |
+
fig = plt.figure(figsize=(15, 5))
|
48 |
+
sns.countplot(x='AttackingWorkRate', data=data)
|
49 |
+
st.pyplot(fig)
|
50 |
+
|
51 |
+
# Membuat Histogram
|
52 |
+
st.write('#### Histogram of Rating')
|
53 |
+
fig = plt.figure(figsize=(15, 5))
|
54 |
+
sns.histplot(data['Overall'], bins=30, kde=True)
|
55 |
+
st.pyplot(fig)
|
56 |
+
|
57 |
+
# Membuat Histogram Berdasarkan Input User
|
58 |
+
st.write('#### Histogram berdasarkan input user')
|
59 |
+
pilihan = st.selectbox('Pilih column : ', ('Age', 'Weight', 'Height', 'ShootingTotal'))
|
60 |
+
fig = plt.figure(figsize=(15, 5))
|
61 |
+
sns.histplot(data[pilihan], bins=30, kde=True)
|
62 |
+
st.pyplot(fig)
|
63 |
+
|
64 |
+
# Membuat Plotly Plot
|
65 |
+
st.write('#### Plotly Plot - ValueEUR dengan Overall')
|
66 |
+
fig = px.scatter(data, x='ValueEUR', y='Overall', hover_data=['Name', 'Age'])
|
67 |
+
st.plotly_chart(fig)
|
68 |
+
|
69 |
+
if __name__ == '__main__':
|
70 |
+
run()
|
list_cat_cols.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["AttackingWorkRate", "DefensiveWorkRate"]
|
list_num_cols.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["Age", "Height", "Weight", "Price", "PaceTotal", "ShootingTotal", "PassingTotal", "DribblingTotal", "DefendingTotal", "PhysicalityTotal"]
|
main.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import eda
|
3 |
+
import prediction
|
4 |
+
|
5 |
+
navigation =st.sidebar.radio('Pilih halaman : ', ('EDA','Prediction'),index=0)
|
6 |
+
if navigation == 'EDA':
|
7 |
+
eda.run()
|
8 |
+
else:
|
9 |
+
prediction.run()
|
model_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e95575e4f4325a8b2cc3751e09de7f29dec00be64588df3e060c44b17ef7e3d
|
3 |
+
size 572
|
model_lin_reg.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3438706bd0366bca697182bbd80794617319e929556af5c80f2f69a5554b15a7
|
3 |
+
size 595
|
model_scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:034959baab04bdd88c67ab44db7038187d1b4b7a68b23701a2414a6d58f081d9
|
3 |
+
size 1096
|
prediction.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Load All Files
|
8 |
+
|
9 |
+
with open('model_lin_reg.pkl', 'rb') as file_1:
|
10 |
+
model_lin_reg = pickle.load(file_1)
|
11 |
+
|
12 |
+
with open('model_scaler.pkl', 'rb') as file_2:
|
13 |
+
model_scaler = pickle.load(file_2)
|
14 |
+
|
15 |
+
with open('model_encoder.pkl','rb') as file_3:
|
16 |
+
model_encoder = pickle.load(file_3)
|
17 |
+
|
18 |
+
with open('list_num_cols.txt', 'r') as file_4:
|
19 |
+
list_num_cols = json.load(file_4)
|
20 |
+
|
21 |
+
with open('list_cat_cols.txt', 'r') as file_5:
|
22 |
+
list_cat_cols = json.load(file_5)
|
23 |
+
|
24 |
+
def run():
|
25 |
+
|
26 |
+
with st.form('key=form_fifa_2022'):
|
27 |
+
name = st.text_input('Full Name', value='')
|
28 |
+
age = st.number_input('Age', min_value=16, max_value=60, value=25, step=1, help='Usia Pemain')
|
29 |
+
weight = st.number_input('Weight', min_value=50, max_value=150, value=70)
|
30 |
+
height = st.slider('Height', 150, 250, 170)
|
31 |
+
price = st.number_input('Price', min_value=0, max_value=100000000, value=0)
|
32 |
+
st.markdown('---')
|
33 |
+
|
34 |
+
attacking_work_rate = st.radio('Attacking Work Rate', ('Low', 'Medium', 'High'), index=2)
|
35 |
+
defensive_work_rate = st.selectbox('Defensive Work Rate', ('Low', 'Medium', 'High'), index=1)
|
36 |
+
st.markdown('---')
|
37 |
+
|
38 |
+
pace = st.number_input('Pace', min_value=0, max_value=100, value=50)
|
39 |
+
shooting = st.number_input('Shooting', min_value=0, max_value=100, value=50)
|
40 |
+
passing = st.number_input('Passing', min_value=0, max_value=100, value=50)
|
41 |
+
dribbling = st.number_input('Dribbling', min_value=0, max_value=100, value=50)
|
42 |
+
defending = st.number_input('Defending', min_value=0, max_value=100, value=50)
|
43 |
+
physicality = st.number_input('Physicality', min_value=0, max_value=100, value=50)
|
44 |
+
|
45 |
+
submitted = st.form_submit_button('Predict')
|
46 |
+
|
47 |
+
data_inf = {
|
48 |
+
'Name': name,
|
49 |
+
'Age': age,
|
50 |
+
'Height': height,
|
51 |
+
'Weight': weight,
|
52 |
+
'Price': price,
|
53 |
+
'AttackingWorkRate': attacking_work_rate,
|
54 |
+
'DefensiveWorkRate': defensive_work_rate,
|
55 |
+
'PaceTotal': pace,
|
56 |
+
'ShootingTotal': shooting,
|
57 |
+
'PassingTotal': passing,
|
58 |
+
'DribblingTotal': dribbling,
|
59 |
+
'DefendingTotal': defending,
|
60 |
+
'PhysicalityTotal': physicality
|
61 |
+
}
|
62 |
+
|
63 |
+
data_inf = pd.DataFrame([data_inf])
|
64 |
+
st.dataframe(data_inf)
|
65 |
+
|
66 |
+
if submitted:
|
67 |
+
# Split between Numerical Columns and Categorical Columns
|
68 |
+
data_inf_num = data_inf[list_num_cols]
|
69 |
+
data_inf_cat = data_inf[list_cat_cols]
|
70 |
+
|
71 |
+
# Feature Scaling and Feature Encoding
|
72 |
+
data_inf_num_scaled = model_scaler.transform(data_inf_num)
|
73 |
+
data_inf_cat_encoded = model_encoder.transform(data_inf_cat)
|
74 |
+
data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis=1)
|
75 |
+
|
76 |
+
# Predict using Linear Regression
|
77 |
+
y_pred_inf = model_lin_reg.predict(data_inf_final)
|
78 |
+
|
79 |
+
st.write('# Rating : ', str(int(y_pred_inf)))
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|