File size: 4,711 Bytes
9614f6b
d6f366b
 
 
8f6f616
d6f366b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6d009c
 
 
 
 
 
d6f366b
 
a11cce5
 
a37d6d4
a11cce5
 
d6f366b
 
 
4ecbcef
d6f366b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d2deb9
d6f366b
 
 
 
 
 
 
 
 
 
078dec5
d6f366b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a11cce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f366b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
print(9)
import argparse
# from dataclasses import dataclass
from langchain.prompts import ChatPromptTemplate

try:
  from langchain_community.vectorstores import Chroma
except:
  from langchain_community.vectorstores import Chroma

# from langchain.document_loaders import DirectoryLoader
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
# from langchain.embeddings import OpenAIEmbeddings
#from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
import openai
from dotenv import load_dotenv
import os
import shutil
import torch
from langchain_experimental.text_splitter import SemanticChunker
from typing import List
import re
import warnings
from typing import List

import torch
from langchain import PromptTemplate
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.llms import HuggingFacePipeline
from langchain.schema import BaseOutputParser
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    StoppingCriteria,
    StoppingCriteriaList,
    pipeline,
)


import subprocess
import sys

def install(package):
    subprocess.check_call([sys.executable, "-m", "pip", "install", package])
install('accelerate')
MODEL_NAME = "tiiuae/falcon-7b-instruct"

llama_pipeline = pipeline(
    "text-generation",  
    model=MODEL_NAME,
    torch_dtype=torch.float16,
    device_map="auto",
)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)


from transformers import AutoModel,AutoTokenizer
model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")


# this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
# this version since causes using large amount of RAm when loading falcon model)
# a custom embedding
#from sentence_transformers import SentenceTransformer

warnings.filterwarnings("ignore", category=UserWarning)


class MyEmbeddings:
    def __init__(self):
        #self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
        self.model=model2

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        inputs = tokenizer2(texts, padding=True, truncation=True, return_tensors="pt")

        # Get the model outputs
        with torch.no_grad():
          outputs = self.model(**inputs)

        # Mean pooling to get sentence embeddings
        embeddings = outputs.last_hidden_state.mean(dim=1)
        return [embeddings[i].tolist() for i, sentence in enumerate(texts)]
    def embed_query(self, query: str) -> List[float]:
        inputs = tokenizer2(query, padding=True, truncation=True, return_tensors="pt")

        # Get the model outputs
        with torch.no_grad():
          outputs = self.model(**inputs)

        # Mean pooling to get sentence embeddings
        embeddings = outputs.last_hidden_state.mean(dim=1)
        return embeddings[0].tolist() 


embeddings = MyEmbeddings()

splitter = SemanticChunker(embeddings)


CHROMA_PATH = "chroma8"
# call the chroma generated in a directory
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)









prompt = """
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.

Current conversation:

Human: Who is Dwight K Schrute?
AI:
""".strip()





template = """
The following 
Current conversation:

{history}

Human: {input}
AI:""".strip()


def get_llama_response(message: str, history: list) -> str:
  query_text = message

  results = db.similarity_search_with_relevance_scores(query_text, k=3)
  if len(results) == 0 or results[0][1] < 0.5:
      print(f"Unable to find matching results.")


  context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
  query = """
    Answer the question based only on the following context. Dont provide any information out of the context:

    {context}

    ---

    Answer the question based on the above context: {question}
    """


  query=query.format(context=context_text,question=message)

  sequences = llama_pipeline(
        query,
        do_sample=True,
        top_k=10,
        num_return_sequences=1,
        eos_token_id=tokenizer.eos_token_id,
        max_length=1024,
    )

  generated_text = sequences[0]['generated_text']
  response = generated_text[len(query):]
  return response.strip()

import gradio as gr

gr.ChatInterface(get_llama_response).launch()