Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,236 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
print(55)
|
| 2 |
+
import argparse
|
| 3 |
+
# from dataclasses import dataclass
|
| 4 |
+
from langchain.prompts import ChatPromptTemplate
|
| 5 |
|
| 6 |
+
try:
|
| 7 |
+
from langchain_community.vectorstores import Chroma
|
| 8 |
+
except:
|
| 9 |
+
from langchain_community.vectorstores import Chroma
|
| 10 |
+
|
| 11 |
+
# from langchain.document_loaders import DirectoryLoader
|
| 12 |
+
from langchain_community.document_loaders import DirectoryLoader
|
| 13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
+
from langchain.schema import Document
|
| 15 |
+
# from langchain.embeddings import OpenAIEmbeddings
|
| 16 |
+
#from langchain_openai import OpenAIEmbeddings
|
| 17 |
+
from langchain_community.vectorstores import Chroma
|
| 18 |
+
import openai
|
| 19 |
+
from dotenv import load_dotenv
|
| 20 |
+
import os
|
| 21 |
+
import shutil
|
| 22 |
+
import torch
|
| 23 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
| 24 |
+
from typing import List
|
| 25 |
+
import re
|
| 26 |
+
import warnings
|
| 27 |
+
from typing import List
|
| 28 |
+
|
| 29 |
+
import torch
|
| 30 |
+
from langchain import PromptTemplate
|
| 31 |
+
from langchain.chains import ConversationChain
|
| 32 |
+
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
|
| 33 |
+
from langchain.llms import HuggingFacePipeline
|
| 34 |
+
from langchain.schema import BaseOutputParser
|
| 35 |
+
from transformers import (
|
| 36 |
+
AutoModelForCausalLM,
|
| 37 |
+
AutoTokenizer,
|
| 38 |
+
StoppingCriteria,
|
| 39 |
+
StoppingCriteriaList,
|
| 40 |
+
pipeline,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
MODEL_NAME = "tiiuae/falcon-7b-instruct"
|
| 45 |
+
|
| 46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
+
MODEL_NAME, trust_remote_code=True, device_map="auto",offload_folder="offload"
|
| 48 |
+
)
|
| 49 |
+
model = model.eval()
|
| 50 |
+
|
| 51 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 52 |
+
print(f"Model device: {model.device}")
|
| 53 |
+
|
| 54 |
+
from transformers import AutoModel,AutoTokenizer
|
| 55 |
+
model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
| 56 |
+
tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
|
| 60 |
+
# this version since causes using large amount of RAm when loading falcon model)
|
| 61 |
+
# a custom embedding
|
| 62 |
+
#from sentence_transformers import SentenceTransformer
|
| 63 |
+
|
| 64 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class MyEmbeddings:
|
| 68 |
+
def __init__(self):
|
| 69 |
+
#self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 70 |
+
self.model=model2
|
| 71 |
+
|
| 72 |
+
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
| 73 |
+
inputs = tokenizer2(texts, padding=True, truncation=True, return_tensors="pt")
|
| 74 |
+
|
| 75 |
+
# Get the model outputs
|
| 76 |
+
with torch.no_grad():
|
| 77 |
+
outputs = self.model(**inputs)
|
| 78 |
+
|
| 79 |
+
# Mean pooling to get sentence embeddings
|
| 80 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 81 |
+
return [embeddings[i].tolist() for i, sentence in enumerate(texts)]
|
| 82 |
+
def embed_query(self, query: str) -> List[float]:
|
| 83 |
+
inputs = tokenizer2(query, padding=True, truncation=True, return_tensors="pt")
|
| 84 |
+
|
| 85 |
+
# Get the model outputs
|
| 86 |
+
with torch.no_grad():
|
| 87 |
+
outputs = self.model(**inputs)
|
| 88 |
+
|
| 89 |
+
# Mean pooling to get sentence embeddings
|
| 90 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 91 |
+
return embeddings[0].tolist()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
embeddings = MyEmbeddings()
|
| 95 |
+
|
| 96 |
+
splitter = SemanticChunker(embeddings)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
CHROMA_PATH = "chroma8"
|
| 100 |
+
# call the chroma generated in a directory
|
| 101 |
+
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
generation_config = model.generation_config
|
| 109 |
+
generation_config.temperature = 0
|
| 110 |
+
generation_config.num_return_sequences = 1
|
| 111 |
+
generation_config.max_new_tokens = 256
|
| 112 |
+
generation_config.use_cache = False
|
| 113 |
+
generation_config.repetition_penalty = 1.7
|
| 114 |
+
generation_config.pad_token_id = tokenizer.eos_token_id
|
| 115 |
+
generation_config.eos_token_id = tokenizer.eos_token_id
|
| 116 |
+
generation_config
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
prompt = """
|
| 120 |
+
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
|
| 121 |
+
|
| 122 |
+
Current conversation:
|
| 123 |
+
|
| 124 |
+
Human: Who is Dwight K Schrute?
|
| 125 |
+
AI:
|
| 126 |
+
""".strip()
|
| 127 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 128 |
+
input_ids = input_ids.to(model.device)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class StopGenerationCriteria(StoppingCriteria):
|
| 133 |
+
def __init__(
|
| 134 |
+
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
|
| 135 |
+
):
|
| 136 |
+
stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
|
| 137 |
+
self.stop_token_ids = [
|
| 138 |
+
torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
def __call__(
|
| 142 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
| 143 |
+
) -> bool:
|
| 144 |
+
for stop_ids in self.stop_token_ids:
|
| 145 |
+
if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
|
| 146 |
+
return True
|
| 147 |
+
return False
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
stop_tokens = [["Human", ":"], ["AI", ":"]]
|
| 151 |
+
stopping_criteria = StoppingCriteriaList(
|
| 152 |
+
[StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
generation_pipeline = pipeline(
|
| 156 |
+
model=model,
|
| 157 |
+
tokenizer=tokenizer,
|
| 158 |
+
return_full_text=True,
|
| 159 |
+
task="text-generation",
|
| 160 |
+
stopping_criteria=stopping_criteria,
|
| 161 |
+
generation_config=generation_config,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
llm = HuggingFacePipeline(pipeline=generation_pipeline)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class CleanupOutputParser(BaseOutputParser):
|
| 168 |
+
def parse(self, text: str) -> str:
|
| 169 |
+
user_pattern = r"\nUser"
|
| 170 |
+
text = re.sub(user_pattern, "", text)
|
| 171 |
+
human_pattern = r"\nHuman:"
|
| 172 |
+
text = re.sub(human_pattern, "", text)
|
| 173 |
+
ai_pattern = r"\nAI:"
|
| 174 |
+
return re.sub(ai_pattern, "", text).strip()
|
| 175 |
+
|
| 176 |
+
@property
|
| 177 |
+
def _type(self) -> str:
|
| 178 |
+
return "output_parser"
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
template = """
|
| 182 |
+
The following
|
| 183 |
+
Current conversation:
|
| 184 |
+
|
| 185 |
+
{history}
|
| 186 |
+
|
| 187 |
+
Human: {input}
|
| 188 |
+
AI:""".strip()
|
| 189 |
+
prompt = PromptTemplate(input_variables=["history", "input"], template=template)
|
| 190 |
+
|
| 191 |
+
memory = ConversationBufferWindowMemory(
|
| 192 |
+
memory_key="history", k=6, return_only_outputs=True
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
chain = ConversationChain(
|
| 196 |
+
llm=llm,
|
| 197 |
+
memory=memory,
|
| 198 |
+
prompt=prompt,
|
| 199 |
+
output_parser=CleanupOutputParser(),
|
| 200 |
+
verbose=True,
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def get_llama_response(message: str, history: list) -> str:
|
| 205 |
+
query_text = message
|
| 206 |
+
|
| 207 |
+
results = db.similarity_search_with_relevance_scores(query_text, k=3)
|
| 208 |
+
if len(results) == 0 or results[0][1] < 0.5:
|
| 209 |
+
print(f"Unable to find matching results.")
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
| 213 |
+
template = """
|
| 214 |
+
The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
|
| 215 |
+
Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
|
| 216 |
+
Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
|
| 217 |
+
|
| 218 |
+
Current conversation:
|
| 219 |
+
"""
|
| 220 |
+
s="""
|
| 221 |
+
{history}
|
| 222 |
+
Human: {input}
|
| 223 |
+
AI:""".strip()
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+ s)
|
| 227 |
+
|
| 228 |
+
#print(template)
|
| 229 |
+
#print('the answer is',chain(query_text))
|
| 230 |
+
chain.prompt=prompt
|
| 231 |
+
res = chain(query_text)
|
| 232 |
+
return(res["response"])
|
| 233 |
+
|
| 234 |
+
import gradio as gr
|
| 235 |
+
|
| 236 |
+
gr.ChatInterface(get_llama_response).launch()
|