AminFaraji commited on
Commit
d6f366b
·
verified ·
1 Parent(s): 968efc4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +235 -5
app.py CHANGED
@@ -1,6 +1,236 @@
1
- import subprocess
2
- import sys
 
 
3
 
4
- def install(package):
5
- subprocess.check_call([sys.executable, "-m", "pip", "install", package])
6
- install('langchain==0.0.233')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print(55)
2
+ import argparse
3
+ # from dataclasses import dataclass
4
+ from langchain.prompts import ChatPromptTemplate
5
 
6
+ try:
7
+ from langchain_community.vectorstores import Chroma
8
+ except:
9
+ from langchain_community.vectorstores import Chroma
10
+
11
+ # from langchain.document_loaders import DirectoryLoader
12
+ from langchain_community.document_loaders import DirectoryLoader
13
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
14
+ from langchain.schema import Document
15
+ # from langchain.embeddings import OpenAIEmbeddings
16
+ #from langchain_openai import OpenAIEmbeddings
17
+ from langchain_community.vectorstores import Chroma
18
+ import openai
19
+ from dotenv import load_dotenv
20
+ import os
21
+ import shutil
22
+ import torch
23
+ from langchain_experimental.text_splitter import SemanticChunker
24
+ from typing import List
25
+ import re
26
+ import warnings
27
+ from typing import List
28
+
29
+ import torch
30
+ from langchain import PromptTemplate
31
+ from langchain.chains import ConversationChain
32
+ from langchain.chains.conversation.memory import ConversationBufferWindowMemory
33
+ from langchain.llms import HuggingFacePipeline
34
+ from langchain.schema import BaseOutputParser
35
+ from transformers import (
36
+ AutoModelForCausalLM,
37
+ AutoTokenizer,
38
+ StoppingCriteria,
39
+ StoppingCriteriaList,
40
+ pipeline,
41
+ )
42
+
43
+
44
+ MODEL_NAME = "tiiuae/falcon-7b-instruct"
45
+
46
+ model = AutoModelForCausalLM.from_pretrained(
47
+ MODEL_NAME, trust_remote_code=True, device_map="auto",offload_folder="offload"
48
+ )
49
+ model = model.eval()
50
+
51
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
52
+ print(f"Model device: {model.device}")
53
+
54
+ from transformers import AutoModel,AutoTokenizer
55
+ model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
56
+ tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
57
+
58
+
59
+ # this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
60
+ # this version since causes using large amount of RAm when loading falcon model)
61
+ # a custom embedding
62
+ #from sentence_transformers import SentenceTransformer
63
+
64
+ warnings.filterwarnings("ignore", category=UserWarning)
65
+
66
+
67
+ class MyEmbeddings:
68
+ def __init__(self):
69
+ #self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
70
+ self.model=model2
71
+
72
+ def embed_documents(self, texts: List[str]) -> List[List[float]]:
73
+ inputs = tokenizer2(texts, padding=True, truncation=True, return_tensors="pt")
74
+
75
+ # Get the model outputs
76
+ with torch.no_grad():
77
+ outputs = self.model(**inputs)
78
+
79
+ # Mean pooling to get sentence embeddings
80
+ embeddings = outputs.last_hidden_state.mean(dim=1)
81
+ return [embeddings[i].tolist() for i, sentence in enumerate(texts)]
82
+ def embed_query(self, query: str) -> List[float]:
83
+ inputs = tokenizer2(query, padding=True, truncation=True, return_tensors="pt")
84
+
85
+ # Get the model outputs
86
+ with torch.no_grad():
87
+ outputs = self.model(**inputs)
88
+
89
+ # Mean pooling to get sentence embeddings
90
+ embeddings = outputs.last_hidden_state.mean(dim=1)
91
+ return embeddings[0].tolist()
92
+
93
+
94
+ embeddings = MyEmbeddings()
95
+
96
+ splitter = SemanticChunker(embeddings)
97
+
98
+
99
+ CHROMA_PATH = "chroma8"
100
+ # call the chroma generated in a directory
101
+ db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
102
+
103
+
104
+
105
+
106
+
107
+
108
+ generation_config = model.generation_config
109
+ generation_config.temperature = 0
110
+ generation_config.num_return_sequences = 1
111
+ generation_config.max_new_tokens = 256
112
+ generation_config.use_cache = False
113
+ generation_config.repetition_penalty = 1.7
114
+ generation_config.pad_token_id = tokenizer.eos_token_id
115
+ generation_config.eos_token_id = tokenizer.eos_token_id
116
+ generation_config
117
+
118
+
119
+ prompt = """
120
+ The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
121
+
122
+ Current conversation:
123
+
124
+ Human: Who is Dwight K Schrute?
125
+ AI:
126
+ """.strip()
127
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
128
+ input_ids = input_ids.to(model.device)
129
+
130
+
131
+
132
+ class StopGenerationCriteria(StoppingCriteria):
133
+ def __init__(
134
+ self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
135
+ ):
136
+ stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
137
+ self.stop_token_ids = [
138
+ torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
139
+ ]
140
+
141
+ def __call__(
142
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
143
+ ) -> bool:
144
+ for stop_ids in self.stop_token_ids:
145
+ if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
146
+ return True
147
+ return False
148
+
149
+
150
+ stop_tokens = [["Human", ":"], ["AI", ":"]]
151
+ stopping_criteria = StoppingCriteriaList(
152
+ [StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
153
+ )
154
+
155
+ generation_pipeline = pipeline(
156
+ model=model,
157
+ tokenizer=tokenizer,
158
+ return_full_text=True,
159
+ task="text-generation",
160
+ stopping_criteria=stopping_criteria,
161
+ generation_config=generation_config,
162
+ )
163
+
164
+ llm = HuggingFacePipeline(pipeline=generation_pipeline)
165
+
166
+
167
+ class CleanupOutputParser(BaseOutputParser):
168
+ def parse(self, text: str) -> str:
169
+ user_pattern = r"\nUser"
170
+ text = re.sub(user_pattern, "", text)
171
+ human_pattern = r"\nHuman:"
172
+ text = re.sub(human_pattern, "", text)
173
+ ai_pattern = r"\nAI:"
174
+ return re.sub(ai_pattern, "", text).strip()
175
+
176
+ @property
177
+ def _type(self) -> str:
178
+ return "output_parser"
179
+
180
+
181
+ template = """
182
+ The following
183
+ Current conversation:
184
+
185
+ {history}
186
+
187
+ Human: {input}
188
+ AI:""".strip()
189
+ prompt = PromptTemplate(input_variables=["history", "input"], template=template)
190
+
191
+ memory = ConversationBufferWindowMemory(
192
+ memory_key="history", k=6, return_only_outputs=True
193
+ )
194
+
195
+ chain = ConversationChain(
196
+ llm=llm,
197
+ memory=memory,
198
+ prompt=prompt,
199
+ output_parser=CleanupOutputParser(),
200
+ verbose=True,
201
+ )
202
+
203
+
204
+ def get_llama_response(message: str, history: list) -> str:
205
+ query_text = message
206
+
207
+ results = db.similarity_search_with_relevance_scores(query_text, k=3)
208
+ if len(results) == 0 or results[0][1] < 0.5:
209
+ print(f"Unable to find matching results.")
210
+
211
+
212
+ context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
213
+ template = """
214
+ The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
215
+ Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
216
+ Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
217
+
218
+ Current conversation:
219
+ """
220
+ s="""
221
+ {history}
222
+ Human: {input}
223
+ AI:""".strip()
224
+
225
+
226
+ prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+ s)
227
+
228
+ #print(template)
229
+ #print('the answer is',chain(query_text))
230
+ chain.prompt=prompt
231
+ res = chain(query_text)
232
+ return(res["response"])
233
+
234
+ import gradio as gr
235
+
236
+ gr.ChatInterface(get_llama_response).launch()