zhangxiyi.amos commited on
Commit
b8bd956
·
1 Parent(s): 21edaab

feat: 添加不同query对比

Browse files
Files changed (1) hide show
  1. app.py +24 -54
app.py CHANGED
@@ -13,65 +13,35 @@ model4 = SentenceTransformer("aspire/acge_text_embedding")
13
  model5 = SentenceTransformer("intfloat/multilingual-e5-large")
14
 
15
  @spaces.GPU
16
- def generate(input1, input2):
17
- if len(input1) < 1:
18
- input1 = "How do I access the index while iterating over a sequence with a for loop?"
19
- if len(input2) < 1:
20
- input2 = "# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"
21
-
22
- embeddings1 = model1.encode(
23
- [
24
- input1,
25
- input2,
26
- ]
27
- )
28
- score1 = cos_sim(embeddings1[0], embeddings1[1])
29
-
30
- embeddings2 = model2.encode(
31
- [
32
- input1,
33
- input2,
34
- ]
35
- )
36
- score2 = cos_sim(embeddings2[0], embeddings2[1])
37
-
38
- embeddings3 = model3.encode(
39
- [
40
- input1,
41
- input2,
42
- ]
43
- )
44
- score3 = cos_sim(embeddings3[0], embeddings3[1])
45
-
46
- embeddings4 = model4.encode(
47
- [
48
- input1,
49
- input2,
50
- ]
51
- )
52
- score4 = cos_sim(embeddings4[0], embeddings4[1])
53
-
54
- embeddings5 = model5.encode(
55
- [
56
- input1,
57
- input2,
58
- ]
59
- )
60
- score5 = cos_sim(embeddings5[0], embeddings5[1])
61
-
62
- return score1, score2, score3, score4, score5
63
 
64
  gr.Interface(
65
  fn=generate,
66
  inputs=[
67
- gr.Text(label="input1", placeholder="How do I access the index while iterating over a sequence with a for loop?"),
68
- gr.Text(label="input2", placeholder="# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"),
 
69
  ],
70
  outputs=[
71
- gr.Text(label="jinaai/jina-embeddings-v2-base-code"),
72
- gr.Text(label="jinaai/jina-embeddings-v2-base-en"),
73
- gr.Text(label="jinaai/jina-embeddings-v2-base-zh"),
74
- gr.Text(label="aspire/acge_text_embedding"),
75
- gr.Text(label="intfloat/multilingual-e5-large"),
76
  ],
77
  ).launch()
 
13
  model5 = SentenceTransformer("intfloat/multilingual-e5-large")
14
 
15
  @spaces.GPU
16
+ def generate(query1, query2, source_code):
17
+ if len(query1) < 1:
18
+ query1 = "How do I access the index while iterating over a sequence with a for loop?"
19
+ if len(query2) < 1:
20
+ query2 = "get a list of all the keys in a dictionary"
21
+ if len(source_code) < 1:
22
+ source_code = "# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"
23
+
24
+ results = []
25
+ for model in [model1, model2, model3, model4, model5]:
26
+ embeddings = model.encode([query1, query2, source_code])
27
+ score1 = cos_sim(embeddings[0], embeddings[2])
28
+ score2 = cos_sim(embeddings[1], embeddings[2])
29
+ results.append((float(score1), float(score2)))
30
+
31
+ return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  gr.Interface(
34
  fn=generate,
35
  inputs=[
36
+ gr.Text(label="query1", placeholder="How do I access the index while iterating over a sequence with a for loop?"),
37
+ gr.Text(label="query2", placeholder="get a list of all the keys in a dictionary"),
38
+ gr.Text(label="code", placeholder="# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"),
39
  ],
40
  outputs=[
41
+ gr.Dataframe(
42
+ headers=["Query1 Score", "Query2 Score"],
43
+ label="Similarity Scores",
44
+ row_labels=["jinaai/jina-embeddings-v2-base-code", "jinaai/jina-embeddings-v2-base-en", "jinaai/jina-embeddings-v2-base-zh", "aspire/acge_text_embedding", "intfloat/multilingual-e5-large"]
45
+ )
46
  ],
47
  ).launch()