Spaces:
Running
Running
feat: 添加对比模型
Browse files
app.py
CHANGED
@@ -1,38 +1,65 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from transformers import AutoModel
|
4 |
from numpy.linalg import norm
|
|
|
|
|
5 |
|
6 |
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
|
|
7 |
model1 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-code", trust_remote_code=True)
|
8 |
model2 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-en", trust_remote_code=True)
|
9 |
model3 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True)
|
|
|
|
|
10 |
|
11 |
@spaces.GPU
|
12 |
def generate(input1, input2):
|
13 |
if len(input1) < 1:
|
14 |
input1 = "How do I access the index while iterating over a sequence with a for loop?"
|
15 |
if len(input2) < 1:
|
16 |
-
input2 = "# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"
|
|
|
17 |
embeddings1 = model1.encode(
|
18 |
[
|
19 |
input1,
|
20 |
input2,
|
21 |
]
|
22 |
)
|
|
|
|
|
23 |
embeddings2 = model2.encode(
|
24 |
[
|
25 |
input1,
|
26 |
input2,
|
27 |
]
|
28 |
)
|
|
|
|
|
29 |
embeddings3 = model3.encode(
|
30 |
[
|
31 |
input1,
|
32 |
input2,
|
33 |
]
|
34 |
)
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
gr.Interface(
|
38 |
fn=generate,
|
@@ -41,8 +68,10 @@ gr.Interface(
|
|
41 |
gr.Text(label="input2", placeholder="# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"),
|
42 |
],
|
43 |
outputs=[
|
44 |
-
gr.Text(label="jina-embeddings-v2-base-code"),
|
45 |
-
gr.Text(label="jina-embeddings-v2-base-en"),
|
46 |
-
gr.Text(label="jina-embeddings-v2-base-zh"),
|
|
|
|
|
47 |
],
|
48 |
).launch()
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
|
|
3 |
from numpy.linalg import norm
|
4 |
+
from transformers import AutoModel
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
|
7 |
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
8 |
+
|
9 |
model1 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-code", trust_remote_code=True)
|
10 |
model2 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-en", trust_remote_code=True)
|
11 |
model3 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True)
|
12 |
+
model4 = SentenceTransformer("aspire/acge_text_embedding")
|
13 |
+
model5 = SentenceTransformer("intfloat/multilingual-e5-large")
|
14 |
|
15 |
@spaces.GPU
|
16 |
def generate(input1, input2):
|
17 |
if len(input1) < 1:
|
18 |
input1 = "How do I access the index while iterating over a sequence with a for loop?"
|
19 |
if len(input2) < 1:
|
20 |
+
input2 = "# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"
|
21 |
+
|
22 |
embeddings1 = model1.encode(
|
23 |
[
|
24 |
input1,
|
25 |
input2,
|
26 |
]
|
27 |
)
|
28 |
+
score1 = cos_sim(embeddings1[0], embeddings1[1])
|
29 |
+
|
30 |
embeddings2 = model2.encode(
|
31 |
[
|
32 |
input1,
|
33 |
input2,
|
34 |
]
|
35 |
)
|
36 |
+
score2 = cos_sim(embeddings2[0], embeddings2[1])
|
37 |
+
|
38 |
embeddings3 = model3.encode(
|
39 |
[
|
40 |
input1,
|
41 |
input2,
|
42 |
]
|
43 |
)
|
44 |
+
score3 = cos_sim(embeddings3[0], embeddings3[1])
|
45 |
+
|
46 |
+
embeddings4 = model4.encode(
|
47 |
+
[
|
48 |
+
input1,
|
49 |
+
input2,
|
50 |
+
]
|
51 |
+
)
|
52 |
+
score4 = cos_sim(embeddings4[0], embeddings4[1])
|
53 |
+
|
54 |
+
embeddings5 = model5.encode(
|
55 |
+
[
|
56 |
+
input1,
|
57 |
+
input2,
|
58 |
+
]
|
59 |
+
)
|
60 |
+
score5 = cos_sim(embeddings5[0], embeddings5[1])
|
61 |
+
|
62 |
+
return score1, score2, score3, score4, score5
|
63 |
|
64 |
gr.Interface(
|
65 |
fn=generate,
|
|
|
68 |
gr.Text(label="input2", placeholder="# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"),
|
69 |
],
|
70 |
outputs=[
|
71 |
+
gr.Text(label="jinaai/jina-embeddings-v2-base-code"),
|
72 |
+
gr.Text(label="jinaai/jina-embeddings-v2-base-en"),
|
73 |
+
gr.Text(label="jinaai/jina-embeddings-v2-base-zh"),
|
74 |
+
gr.Text(label="aspire/acge_text_embedding"),
|
75 |
+
gr.Text(label="intfloat/multilingual-e5-large"),
|
76 |
],
|
77 |
).launch()
|