Spaces:
Running
Running
zhangxiyi.amos
commited on
Commit
·
312d284
1
Parent(s):
c5064c3
fix: code5t 部署
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
from numpy.linalg import norm
|
4 |
-
from transformers import AutoModel
|
5 |
from sentence_transformers import SentenceTransformer
|
|
|
6 |
|
7 |
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
8 |
|
@@ -11,7 +12,17 @@ model2 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-en", trust_re
|
|
11 |
model3 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True)
|
12 |
model4 = SentenceTransformer("aspire/acge_text_embedding")
|
13 |
model5 = SentenceTransformer("intfloat/multilingual-e5-large")
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
@spaces.GPU
|
17 |
def generate(query1, query2, source_code):
|
@@ -24,11 +35,21 @@ def generate(query1, query2, source_code):
|
|
24 |
|
25 |
results = []
|
26 |
model_names = ["jinaai/jina-embeddings-v2-base-code", "jinaai/jina-embeddings-v2-base-en", "jinaai/jina-embeddings-v2-base-zh", "aspire/acge_text_embedding", "intfloat/multilingual-e5-large", "Salesforce/codet5p-110m-embedding"]
|
27 |
-
|
|
|
28 |
embeddings = model.encode([query1, query2, source_code])
|
29 |
score1 = cos_sim(embeddings[0], embeddings[2])
|
30 |
score2 = cos_sim(embeddings[1], embeddings[2])
|
31 |
results.append([name, float(score1), float(score2)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
return results
|
34 |
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
from numpy.linalg import norm
|
4 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
+
import torch
|
7 |
|
8 |
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
9 |
|
|
|
12 |
model3 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True)
|
13 |
model4 = SentenceTransformer("aspire/acge_text_embedding")
|
14 |
model5 = SentenceTransformer("intfloat/multilingual-e5-large")
|
15 |
+
|
16 |
+
# 对于 Salesforce/codet5p-110m-embedding 模型,我们需要特殊处理
|
17 |
+
config = AutoConfig.from_pretrained("Salesforce/codet5p-110m-embedding", trust_remote_code=True)
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5p-110m-embedding", trust_remote_code=True)
|
19 |
+
model6 = AutoModel.from_pretrained("Salesforce/codet5p-110m-embedding", config=config, trust_remote_code=True)
|
20 |
+
|
21 |
+
# 创建一个简单的平均池化函数来获取嵌入
|
22 |
+
def mean_pooling(model_output, attention_mask):
|
23 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
24 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
25 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
26 |
|
27 |
@spaces.GPU
|
28 |
def generate(query1, query2, source_code):
|
|
|
35 |
|
36 |
results = []
|
37 |
model_names = ["jinaai/jina-embeddings-v2-base-code", "jinaai/jina-embeddings-v2-base-en", "jinaai/jina-embeddings-v2-base-zh", "aspire/acge_text_embedding", "intfloat/multilingual-e5-large", "Salesforce/codet5p-110m-embedding"]
|
38 |
+
|
39 |
+
for model, name in zip([model1, model2, model3, model4, model5], model_names[:-1]):
|
40 |
embeddings = model.encode([query1, query2, source_code])
|
41 |
score1 = cos_sim(embeddings[0], embeddings[2])
|
42 |
score2 = cos_sim(embeddings[1], embeddings[2])
|
43 |
results.append([name, float(score1), float(score2)])
|
44 |
+
|
45 |
+
# 特殊处理 Salesforce/codet5p-110m-embedding 模型
|
46 |
+
inputs = tokenizer([query1, query2, source_code], padding=True, truncation=True, return_tensors="pt")
|
47 |
+
with torch.no_grad():
|
48 |
+
model_output = model6(**inputs)
|
49 |
+
embeddings = mean_pooling(model_output, inputs['attention_mask'])
|
50 |
+
score1 = cos_sim(embeddings[0], embeddings[2])
|
51 |
+
score2 = cos_sim(embeddings[1], embeddings[2])
|
52 |
+
results.append([model_names[-1], float(score1), float(score2)])
|
53 |
|
54 |
return results
|
55 |
|