zhangxiyi.amos commited on
Commit
c5064c3
·
1 Parent(s): c0026d3

feat: 添加对比模型codet5

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -11,6 +11,7 @@ model2 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-en", trust_re
11
  model3 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True)
12
  model4 = SentenceTransformer("aspire/acge_text_embedding")
13
  model5 = SentenceTransformer("intfloat/multilingual-e5-large")
 
14
 
15
  @spaces.GPU
16
  def generate(query1, query2, source_code):
@@ -22,8 +23,8 @@ def generate(query1, query2, source_code):
22
  source_code = "# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"
23
 
24
  results = []
25
- model_names = ["jinaai/jina-embeddings-v2-base-code", "jinaai/jina-embeddings-v2-base-en", "jinaai/jina-embeddings-v2-base-zh", "aspire/acge_text_embedding", "intfloat/multilingual-e5-large"]
26
- for model, name in zip([model1, model2, model3, model4, model5], model_names):
27
  embeddings = model.encode([query1, query2, source_code])
28
  score1 = cos_sim(embeddings[0], embeddings[2])
29
  score2 = cos_sim(embeddings[1], embeddings[2])
 
11
  model3 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True)
12
  model4 = SentenceTransformer("aspire/acge_text_embedding")
13
  model5 = SentenceTransformer("intfloat/multilingual-e5-large")
14
+ model6 = SentenceTransformer("Salesforce/codet5p-110m-embedding")
15
 
16
  @spaces.GPU
17
  def generate(query1, query2, source_code):
 
23
  source_code = "# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"
24
 
25
  results = []
26
+ model_names = ["jinaai/jina-embeddings-v2-base-code", "jinaai/jina-embeddings-v2-base-en", "jinaai/jina-embeddings-v2-base-zh", "aspire/acge_text_embedding", "intfloat/multilingual-e5-large", "Salesforce/codet5p-110m-embedding"]
27
+ for model, name in zip([model1, model2, model3, model4, model5, model6], model_names):
28
  embeddings = model.encode([query1, query2, source_code])
29
  score1 = cos_sim(embeddings[0], embeddings[2])
30
  score2 = cos_sim(embeddings[1], embeddings[2])