Spaces:
Running
Running
zhangxiyi.amos
commited on
Commit
·
c5064c3
1
Parent(s):
c0026d3
feat: 添加对比模型codet5
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ model2 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-en", trust_re
|
|
11 |
model3 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True)
|
12 |
model4 = SentenceTransformer("aspire/acge_text_embedding")
|
13 |
model5 = SentenceTransformer("intfloat/multilingual-e5-large")
|
|
|
14 |
|
15 |
@spaces.GPU
|
16 |
def generate(query1, query2, source_code):
|
@@ -22,8 +23,8 @@ def generate(query1, query2, source_code):
|
|
22 |
source_code = "# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"
|
23 |
|
24 |
results = []
|
25 |
-
model_names = ["jinaai/jina-embeddings-v2-base-code", "jinaai/jina-embeddings-v2-base-en", "jinaai/jina-embeddings-v2-base-zh", "aspire/acge_text_embedding", "intfloat/multilingual-e5-large"]
|
26 |
-
for model, name in zip([model1, model2, model3, model4, model5], model_names):
|
27 |
embeddings = model.encode([query1, query2, source_code])
|
28 |
score1 = cos_sim(embeddings[0], embeddings[2])
|
29 |
score2 = cos_sim(embeddings[1], embeddings[2])
|
|
|
11 |
model3 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True)
|
12 |
model4 = SentenceTransformer("aspire/acge_text_embedding")
|
13 |
model5 = SentenceTransformer("intfloat/multilingual-e5-large")
|
14 |
+
model6 = SentenceTransformer("Salesforce/codet5p-110m-embedding")
|
15 |
|
16 |
@spaces.GPU
|
17 |
def generate(query1, query2, source_code):
|
|
|
23 |
source_code = "# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"
|
24 |
|
25 |
results = []
|
26 |
+
model_names = ["jinaai/jina-embeddings-v2-base-code", "jinaai/jina-embeddings-v2-base-en", "jinaai/jina-embeddings-v2-base-zh", "aspire/acge_text_embedding", "intfloat/multilingual-e5-large", "Salesforce/codet5p-110m-embedding"]
|
27 |
+
for model, name in zip([model1, model2, model3, model4, model5, model6], model_names):
|
28 |
embeddings = model.encode([query1, query2, source_code])
|
29 |
score1 = cos_sim(embeddings[0], embeddings[2])
|
30 |
score2 = cos_sim(embeddings[1], embeddings[2])
|