File size: 9,806 Bytes
31af933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import gradio as gr
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration, pipeline
import random
from gtts import gTTS
import re

# Load the BLIP model for generating captions
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")


# Load GPT-2 model for story generation
story_generator = pipeline("text-generation", model="gpt2")

# Load translation model (English to Arabic)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ar")

# Default characters and settings
default_characters = [
    "Ali", "Fatima", "Omar", "Amina", "Zaid", "Layla", "Hassan", "Sara",
    "Yusuf", "Noura", "Khalid", "Rania", "Amir", "Jasmine", "Farah", "Sami",
    "Aisha", "Rami", "Zayn", "Dalia", "Bilal", "Ibtisam", "Mansour", "Afnan",
    "Jamal", "Asma", "Khadija", "Hadi", "Maya", "Samir", "Nabil", "Lina",
    "Tariq", "Yara", "Munir", "Ranya", "Firas", "Nadia", "Alaa", "Nida",
    "Omar", "Dina", "Zein", "Rami", "Yasmin", "Salma", "Jamil", "Khaled"
]

default_settings = [
    "a mystical forest", "a bustling city", "an ancient castle", "a snowy mountain village",
    "a sunny beach", "a dark cave", "a magical kingdom", "a quiet library",
    "a colorful carnival", "a haunted house", "a space station", "a serene garden",
    "a busy marketplace", "a futuristic city", "a pirate ship", "a wild savannah",
    "a snowy tundra", "a tropical island", "an underwater city", "a hidden valley",
    "a dragon's lair", "an enchanted meadow", "a witch's cottage", "a cozy cabin",
    "a bustling train station", "a giant's castle", "a fairy-tale village",
    "a mysterious island", "a historical battlefield", "an abandoned factory",
    "a magical forest glen", "a secret garden", "a royal palace", "a shimmering lagoon",
    "a giant treehouse", "a whimsical tree-lined street", "a rugged mountain range",
    "a starry night sky", "a bright sunny day", "a lively zoo", "an exciting amusement park"
]


def preprocess_image(image):
    return image.convert("RGB").resize((256, 256))


def get_captions(images):
    captions = []
    for img in images:
        processed_img = preprocess_image(img)
        inputs = blip_processor(images=processed_img, return_tensors="pt")
        caption = blip_model.generate(**inputs)
        caption_text = blip_processor.decode(caption[0], skip_special_tokens=True)
        captions.append(caption_text)
    return " ".join(captions)


def clean_up_caption(caption):
    caption = caption.strip().capitalize()
    scene_descriptions = ["scene", "view", "image", "photo", "picture"]
    for word in scene_descriptions:
        caption = caption.replace(word, "").strip()

    # Simplifying specific terms
    caption = caption.replace("a snowy scene", "on a snowy mountain").replace("log cabin", "log cabin").strip()

    return caption


def generate_relevant_setting(captions):
    keywords_to_settings = {
        "castle": "an ancient castle",
        "forest": "a mystical forest",
        "mountain": "a snowy mountain village",
        "beach": "a sunny beach"
    }

    for keyword, setting in keywords_to_settings.items():
        if keyword in captions.lower():
            return setting
    return "a mysterious place"


def integrate_caption_into_story(caption, character, setting):
    cleaned_caption = clean_up_caption(caption)

    # Lists for interaction scenarios
    animals = ["cat", "dog", "bear", "lion", "eagle", "bird", "rabbit", "tiger", "elephant", "fish", "horse", "wolf",
               "deer"]
    beings = ["girl", "boy", "man", "woman", "child", "hero", "princess", "prince", "wizard", "witch", "monster",
              "creature"]
    items = ["book", "sword", "fruit", "food", "technology", "map", "key", "potion", "gem", "tool", "lantern", "shield"]

    if "cabin" in cleaned_caption and "snow" in cleaned_caption:
        return f"In a cozy log cabin on a snowy mountain, there lived a brave character named {character}."
    elif "mountain" in cleaned_caption:
        return f"High up in the mountains, {character} embarked on an adventure."
    elif any(animal in cleaned_caption for animal in animals):
        return f"One day, {character} encountered a {cleaned_caption} that changed everything."
    elif any(being in cleaned_caption for being in beings):
        return f"A {cleaned_caption} approached {character} with a sense of wonder."
    elif "treasure" in cleaned_caption:
        return f"{character} stumbled upon a treasure in the {cleaned_caption}, which held many secrets."
    elif any(item in cleaned_caption for item in items):
        return f"{character} picked up a {cleaned_caption}, which turned out to be very special."
    else:
        return f"{character} was surrounded by {cleaned_caption} during their adventure."


def trim_story(story, max_lines, max_words=None):
    # Split the story into sentences using regex to handle punctuation correctly
    sentences = re.split(r'(?<=[.!?]) +', story.strip())
    trimmed_lines = []
    line_count = 0
    word_count = 0

    for sentence in sentences:
        sentence_word_count = len(sentence.split())

        # If max_words is specified, check against it
        if max_words is not None and (word_count + sentence_word_count) > max_words:
            break

        # Check if adding this sentence would exceed max_lines
        if line_count < max_lines:
            trimmed_lines.append(sentence.strip())
            line_count += 1
            word_count += sentence_word_count
        else:
            break


    return ' '.join(trimmed_lines)


def generate_story_from_images(images, story_length, character, setting, tone, language):
    try:
        if isinstance(images, Image.Image):
            images = [images]

        images = [Image.fromarray(image) if not isinstance(image, Image.Image) else image for image in images]
        combined_captions = get_captions(images)

        if not character.strip():
            character = random.choice(default_characters)  # Random character
        if not setting.strip():
            setting = generate_relevant_setting(combined_captions)

        # Set the maximum tokens and lines based on story length
        if story_length == "Short":
            max_new_tokens = 50
            max_lines = 5
        elif story_length == "Medium":
            max_new_tokens = 100
            max_lines = 15
        else:  # Long
            max_new_tokens = 300
            max_lines = 90

        caption_in_story = integrate_caption_into_story(combined_captions, character, setting)

        story_prompt = (
            f"Once upon a time, in {setting}, there was a kind and brave character named {character}. "
            f"{caption_in_story} They had many adventures filled with fun and wonder."
        ) if tone == "Kids Story" else (
            f"In {setting}, a character named {character} faced challenges and deep emotions. "
            f"{caption_in_story} Their journey was filled with tension, suspense, and moments of heartfelt struggle."
        )

        # Check length and truncate if necessary
        if len(story_prompt) > 1024:  # Limit input length to prevent exceeding model limits
            story_prompt = story_prompt[:1024]

        # Generate the story
        story = story_generator(
            story_prompt,
            max_new_tokens=max_new_tokens,
            truncation=True,
            pad_token_id=story_generator.tokenizer.eos_token_id,
            num_return_sequences=1
        )
        generated_story = story[0]['generated_text']
        trimmed_story = trim_story(generated_story, max_lines)

        if language == "Arabic":
            trimmed_story = translator(trimmed_story)[0]['translation_text']

        return combined_captions, trimmed_story

    except Exception as e:
        return str(e), "Error generating story."


def text_to_speech(story_text, language):
    lang = 'ar' if language == "Arabic" else 'en'
    tts = gTTS(text=story_text, lang=lang)
    audio_file = "story.mp3"
    tts.save(audio_file)
    return audio_file


# Create a Gradio interface
with gr.Blocks() as interface:
    with gr.Row():
        image_input = gr.Image(type="pil", label="Upload Images")  

    character_setting_language = gr.Row()
    character_input = gr.Textbox(label="Character Name (Optional)",
                                 placeholder="Enter character name...")  
    setting_input = gr.Textbox(label="Setting (Optional)", placeholder="Enter story setting...")  
    story_length = gr.Radio(
        choices=["Short", "Medium", "Long"],
        label="Select Story Length",
        value="Medium"  # Default value
    )

    language = gr.Radio(
        choices=["English", "Arabic"],
        label="Select Story Language",
        value="English"  # Default value
    )

    tone = gr.Radio(
        choices=["Kids Story", "Drama"],
        label="Select Story Style/Tone",
        value="Kids Story"  # Default value
    )

    image_descriptions = gr.Textbox(label="Image Descriptions", interactive=False)
    generated_story = gr.Textbox(label="Generated Story", interactive=False)

    submit_button = gr.Button("Generate Story")
    listen_button = gr.Button("Listen to Story")

    submit_button.click(
        fn=generate_story_from_images,
        inputs=[image_input, story_length, character_input, setting_input, tone, language],
        outputs=[image_descriptions, generated_story]
    )

    listen_button.click(
        fn=text_to_speech,
        inputs=[generated_story, language],
        outputs=gr.Audio(label="Story Audio", type="filepath")  # Output audio file
    )

# Launch the app
if __name__ == "__main__":
    interface.launch()