Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,20 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
-
import torch
|
4 |
import json
|
5 |
import os
|
|
|
|
|
6 |
|
7 |
# Streamlit app configuration
|
8 |
st.set_page_config(page_title="AI Chatbot", layout="centered")
|
9 |
|
10 |
-
# Fix the model
|
11 |
def fix_model_config(model_name):
|
12 |
-
#
|
13 |
config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
|
14 |
config_path = "config.json"
|
15 |
|
16 |
if not os.path.exists(config_path):
|
17 |
-
import requests
|
18 |
response = requests.get(config_url)
|
19 |
response.raise_for_status() # Ensure the request is successful
|
20 |
with open(config_path, "w") as f:
|
@@ -27,7 +27,7 @@ def fix_model_config(model_name):
|
|
27 |
# Fix the `rope_scaling` field
|
28 |
if "rope_scaling" in config:
|
29 |
config["rope_scaling"] = {
|
30 |
-
"type": "linear", #
|
31 |
"factor": config["rope_scaling"].get("factor", 1.0)
|
32 |
}
|
33 |
|
@@ -45,12 +45,12 @@ def load_pipeline():
|
|
45 |
# Fix the model configuration
|
46 |
fixed_config_path = fix_model_config(model_name)
|
47 |
|
48 |
-
#
|
49 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
model = AutoModelForCausalLM.from_pretrained(
|
51 |
model_name,
|
52 |
config=fixed_config_path,
|
53 |
-
torch_dtype=torch.float16, #
|
54 |
device_map="auto" # Automatically allocate to GPU if available
|
55 |
)
|
56 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, LlamaConfig
|
|
|
3 |
import json
|
4 |
import os
|
5 |
+
import requests
|
6 |
+
import torch
|
7 |
|
8 |
# Streamlit app configuration
|
9 |
st.set_page_config(page_title="AI Chatbot", layout="centered")
|
10 |
|
11 |
+
# Fix and modify the model configuration dynamically
|
12 |
def fix_model_config(model_name):
|
13 |
+
# Download the configuration file from the Hugging Face hub
|
14 |
config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
|
15 |
config_path = "config.json"
|
16 |
|
17 |
if not os.path.exists(config_path):
|
|
|
18 |
response = requests.get(config_url)
|
19 |
response.raise_for_status() # Ensure the request is successful
|
20 |
with open(config_path, "w") as f:
|
|
|
27 |
# Fix the `rope_scaling` field
|
28 |
if "rope_scaling" in config:
|
29 |
config["rope_scaling"] = {
|
30 |
+
"type": "linear", # Only keep 'type' and 'factor'
|
31 |
"factor": config["rope_scaling"].get("factor", 1.0)
|
32 |
}
|
33 |
|
|
|
45 |
# Fix the model configuration
|
46 |
fixed_config_path = fix_model_config(model_name)
|
47 |
|
48 |
+
# Use the fixed configuration to load the model
|
49 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
model = AutoModelForCausalLM.from_pretrained(
|
51 |
model_name,
|
52 |
config=fixed_config_path,
|
53 |
+
torch_dtype=torch.float16, # Mixed precision for efficiency
|
54 |
device_map="auto" # Automatically allocate to GPU if available
|
55 |
)
|
56 |
|