Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
import json
|
4 |
import os
|
5 |
import requests
|
@@ -10,32 +10,27 @@ st.set_page_config(page_title="AI Chatbot", layout="centered")
|
|
10 |
|
11 |
# Fix and modify the model configuration dynamically
|
12 |
def fix_model_config(model_name):
|
13 |
-
# Download the configuration file from the Hugging Face hub
|
14 |
config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
|
15 |
-
|
16 |
|
17 |
-
|
|
|
18 |
response = requests.get(config_url)
|
19 |
-
response.raise_for_status()
|
20 |
-
|
21 |
-
f.write(response.text)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"type": "linear", # Only keep 'type' and 'factor'
|
31 |
-
"factor": config["rope_scaling"].get("factor", 1.0)
|
32 |
-
}
|
33 |
|
34 |
-
|
35 |
-
with open(config_path, "w") as f:
|
36 |
-
json.dump(config, f)
|
37 |
-
|
38 |
-
return config_path
|
39 |
|
40 |
# Load the pipeline
|
41 |
@st.cache_resource
|
@@ -45,15 +40,16 @@ def load_pipeline():
|
|
45 |
# Fix the model configuration
|
46 |
fixed_config_path = fix_model_config(model_name)
|
47 |
|
48 |
-
#
|
49 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
model = AutoModelForCausalLM.from_pretrained(
|
51 |
model_name,
|
52 |
config=fixed_config_path,
|
53 |
-
torch_dtype=torch.float16,
|
54 |
-
device_map="auto"
|
55 |
)
|
56 |
|
|
|
57 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
58 |
|
59 |
pipe = load_pipeline()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
import json
|
4 |
import os
|
5 |
import requests
|
|
|
10 |
|
11 |
# Fix and modify the model configuration dynamically
|
12 |
def fix_model_config(model_name):
|
|
|
13 |
config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
|
14 |
+
fixed_config_path = "fixed_config.json"
|
15 |
|
16 |
+
# Download and modify config.json
|
17 |
+
if not os.path.exists(fixed_config_path):
|
18 |
response = requests.get(config_url)
|
19 |
+
response.raise_for_status()
|
20 |
+
config = response.json()
|
|
|
21 |
|
22 |
+
# Fix the `rope_scaling` field
|
23 |
+
if "rope_scaling" in config:
|
24 |
+
config["rope_scaling"] = {
|
25 |
+
"type": "linear",
|
26 |
+
"factor": config["rope_scaling"].get("factor", 1.0)
|
27 |
+
}
|
28 |
|
29 |
+
# Save the fixed config
|
30 |
+
with open(fixed_config_path, "w") as f:
|
31 |
+
json.dump(config, f)
|
|
|
|
|
|
|
32 |
|
33 |
+
return fixed_config_path
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Load the pipeline
|
36 |
@st.cache_resource
|
|
|
40 |
# Fix the model configuration
|
41 |
fixed_config_path = fix_model_config(model_name)
|
42 |
|
43 |
+
# Load tokenizer and model
|
44 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
model = AutoModelForCausalLM.from_pretrained(
|
46 |
model_name,
|
47 |
config=fixed_config_path,
|
48 |
+
torch_dtype=torch.float16,
|
49 |
+
device_map="auto"
|
50 |
)
|
51 |
|
52 |
+
# Return the text generation pipeline
|
53 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
54 |
|
55 |
pipe = load_pipeline()
|