uncensored_Ai / app.py
Allahbux's picture
Update app.py
ac00ffa verified
raw
history blame
1.71 kB
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# Streamlit app configuration
st.set_page_config(page_title="AI Chatbot", layout="centered")
# Load the model pipeline
@st.cache_resource
def load_pipeline():
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto", # Use GPU if available
rope_scaling=None # Avoid issues with rope_scaling
)
return pipeline("text-generation", model=model, tokenizer=tokenizer)
pipe = load_pipeline()
# Streamlit App UI
st.title("🤖 AI Chatbot")
st.markdown(
"""
Welcome to the **AI Chatbot** powered by Hugging Face's **Llama-3.1-8B-Lexi-Uncensored-V2** model.
Type your message below and interact with the AI!
"""
)
# User input area
user_input = st.text_area(
"Your Message",
placeholder="Type your message here...",
height=100
)
# Button to generate response
if st.button("Generate Response"):
if user_input.strip():
with st.spinner("Generating response..."):
try:
response = pipe(user_input, max_length=150, num_return_sequences=1)
st.text_area("Response", value=response[0]["generated_text"], height=200)
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.warning("Please enter a message before clicking the button.")
# Footer
st.markdown("---")
st.markdown("Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face](https://huggingface.co).")