File size: 1,711 Bytes
aff3dff
ac00ffa
aff3dff
ac00ffa
45996ec
 
ac00ffa
45996ec
932a3aa
 
ac00ffa
 
 
 
 
 
 
 
 
aff3dff
932a3aa
aff3dff
ac00ffa
932a3aa
 
 
45996ec
ac00ffa
932a3aa
 
aff3dff
ac00ffa
932a3aa
45996ec
 
932a3aa
 
aff3dff
ac00ffa
aff3dff
932a3aa
 
ac00ffa
 
 
 
 
aff3dff
 
45996ec
 
 
ac00ffa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM

# Streamlit app configuration
st.set_page_config(page_title="AI Chatbot", layout="centered")

# Load the model pipeline
@st.cache_resource
def load_pipeline():
    model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
    
    # Load tokenizer and model
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        device_map="auto",  # Use GPU if available
        rope_scaling=None   # Avoid issues with rope_scaling
    )
    return pipeline("text-generation", model=model, tokenizer=tokenizer)

pipe = load_pipeline()

# Streamlit App UI
st.title("🤖 AI Chatbot")
st.markdown(
    """
    Welcome to the **AI Chatbot** powered by Hugging Face's **Llama-3.1-8B-Lexi-Uncensored-V2** model.  
    Type your message below and interact with the AI!
    """
)

# User input area
user_input = st.text_area(
    "Your Message",
    placeholder="Type your message here...",
    height=100
)

# Button to generate response
if st.button("Generate Response"):
    if user_input.strip():
        with st.spinner("Generating response..."):
            try:
                response = pipe(user_input, max_length=150, num_return_sequences=1)
                st.text_area("Response", value=response[0]["generated_text"], height=200)
            except Exception as e:
                st.error(f"An error occurred: {e}")
    else:
        st.warning("Please enter a message before clicking the button.")

# Footer
st.markdown("---")
st.markdown("Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face](https://huggingface.co).")