Spaces:
Running
Running
File size: 1,711 Bytes
aff3dff ac00ffa aff3dff ac00ffa 45996ec ac00ffa 45996ec 932a3aa ac00ffa aff3dff 932a3aa aff3dff ac00ffa 932a3aa 45996ec ac00ffa 932a3aa aff3dff ac00ffa 932a3aa 45996ec 932a3aa aff3dff ac00ffa aff3dff 932a3aa ac00ffa aff3dff 45996ec ac00ffa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# Streamlit app configuration
st.set_page_config(page_title="AI Chatbot", layout="centered")
# Load the model pipeline
@st.cache_resource
def load_pipeline():
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto", # Use GPU if available
rope_scaling=None # Avoid issues with rope_scaling
)
return pipeline("text-generation", model=model, tokenizer=tokenizer)
pipe = load_pipeline()
# Streamlit App UI
st.title("🤖 AI Chatbot")
st.markdown(
"""
Welcome to the **AI Chatbot** powered by Hugging Face's **Llama-3.1-8B-Lexi-Uncensored-V2** model.
Type your message below and interact with the AI!
"""
)
# User input area
user_input = st.text_area(
"Your Message",
placeholder="Type your message here...",
height=100
)
# Button to generate response
if st.button("Generate Response"):
if user_input.strip():
with st.spinner("Generating response..."):
try:
response = pipe(user_input, max_length=150, num_return_sequences=1)
st.text_area("Response", value=response[0]["generated_text"], height=200)
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.warning("Please enter a message before clicking the button.")
# Footer
st.markdown("---")
st.markdown("Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face](https://huggingface.co).") |