Spaces:
Running
Running
File size: 2,817 Bytes
aff3dff ac00ffa 928429b aff3dff ac00ffa 45996ec 928429b ac00ffa 45996ec 932a3aa ac00ffa 928429b ac00ffa 928429b ac00ffa 928429b ac00ffa aff3dff 932a3aa aff3dff ac00ffa 932a3aa 45996ec ac00ffa 932a3aa aff3dff ac00ffa 932a3aa 45996ec 932a3aa aff3dff ac00ffa aff3dff 932a3aa ac00ffa aff3dff 45996ec ac00ffa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import json
import requests
import os
# Streamlit app configuration
st.set_page_config(page_title="AI Chatbot", layout="centered")
# Fix the model's configuration before loading
def fix_model_config(model_name):
# Download the configuration file from the model repository
config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
config_path = "config.json"
if not os.path.exists(config_path):
response = requests.get(config_url)
response.raise_for_status() # Raise an error if the request fails
with open(config_path, "w") as f:
f.write(response.text)
# Load the configuration and modify rope_scaling if necessary
with open(config_path, "r") as f:
config = json.load(f)
if "rope_scaling" in config:
config["rope_scaling"] = {
"type": "linear", # Replace the problematic rope_scaling type
"factor": config["rope_scaling"].get("factor", 1.0)
}
# Save the modified configuration
with open(config_path, "w") as f:
json.dump(config, f)
return config_path
# Load the model pipeline
@st.cache_resource
def load_pipeline():
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# Fix the model configuration
fixed_config_path = fix_model_config(model_name)
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
config=fixed_config_path,
device_map="auto" # Use GPU if available
)
return pipeline("text-generation", model=model, tokenizer=tokenizer)
pipe = load_pipeline()
# Streamlit App UI
st.title("🤖 AI Chatbot")
st.markdown(
"""
Welcome to the **AI Chatbot** powered by Hugging Face's **Llama-3.1-8B-Lexi-Uncensored-V2** model.
Type your message below and interact with the AI!
"""
)
# User input area
user_input = st.text_area(
"Your Message",
placeholder="Type your message here...",
height=100
)
# Button to generate response
if st.button("Generate Response"):
if user_input.strip():
with st.spinner("Generating response..."):
try:
response = pipe(user_input, max_length=150, num_return_sequences=1)
st.text_area("Response", value=response[0]["generated_text"], height=200)
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.warning("Please enter a message before clicking the button.")
# Footer
st.markdown("---")
st.markdown("Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face](https://huggingface.co).") |