File size: 2,817 Bytes
aff3dff
ac00ffa
928429b
 
 
aff3dff
ac00ffa
45996ec
 
928429b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac00ffa
45996ec
932a3aa
 
ac00ffa
928429b
 
 
ac00ffa
 
 
 
928429b
 
ac00ffa
928429b
ac00ffa
aff3dff
932a3aa
aff3dff
ac00ffa
932a3aa
 
 
45996ec
ac00ffa
932a3aa
 
aff3dff
ac00ffa
932a3aa
45996ec
 
932a3aa
 
aff3dff
ac00ffa
aff3dff
932a3aa
 
ac00ffa
 
 
 
 
aff3dff
 
45996ec
 
 
ac00ffa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import json
import requests
import os

# Streamlit app configuration
st.set_page_config(page_title="AI Chatbot", layout="centered")

# Fix the model's configuration before loading
def fix_model_config(model_name):
    # Download the configuration file from the model repository
    config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
    config_path = "config.json"
    
    if not os.path.exists(config_path):
        response = requests.get(config_url)
        response.raise_for_status()  # Raise an error if the request fails
        with open(config_path, "w") as f:
            f.write(response.text)
    
    # Load the configuration and modify rope_scaling if necessary
    with open(config_path, "r") as f:
        config = json.load(f)
    
    if "rope_scaling" in config:
        config["rope_scaling"] = {
            "type": "linear",  # Replace the problematic rope_scaling type
            "factor": config["rope_scaling"].get("factor", 1.0)
        }
    
    # Save the modified configuration
    with open(config_path, "w") as f:
        json.dump(config, f)
    
    return config_path

# Load the model pipeline
@st.cache_resource
def load_pipeline():
    model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
    
    # Fix the model configuration
    fixed_config_path = fix_model_config(model_name)
    
    # Load tokenizer and model
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        config=fixed_config_path,
        device_map="auto"  # Use GPU if available
    )
    
    return pipeline("text-generation", model=model, tokenizer=tokenizer)

pipe = load_pipeline()

# Streamlit App UI
st.title("🤖 AI Chatbot")
st.markdown(
    """
    Welcome to the **AI Chatbot** powered by Hugging Face's **Llama-3.1-8B-Lexi-Uncensored-V2** model.  
    Type your message below and interact with the AI!
    """
)

# User input area
user_input = st.text_area(
    "Your Message",
    placeholder="Type your message here...",
    height=100
)

# Button to generate response
if st.button("Generate Response"):
    if user_input.strip():
        with st.spinner("Generating response..."):
            try:
                response = pipe(user_input, max_length=150, num_return_sequences=1)
                st.text_area("Response", value=response[0]["generated_text"], height=200)
            except Exception as e:
                st.error(f"An error occurred: {e}")
    else:
        st.warning("Please enter a message before clicking the button.")

# Footer
st.markdown("---")
st.markdown("Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face](https://huggingface.co).")