Spaces:
Running
Running
File size: 1,455 Bytes
d9d94b1 cb9846d 241d532 cb9846d 30214b5 d72f733 c94a411 cb9846d d9d94b1 3a921e4 4de176d 3a921e4 4de176d 1180c79 4de176d d9d94b1 4de176d cb9846d d9d94b1 cb9846d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import io
import os
import gradio as gr
from google.cloud import speech
rutas = [os.getcwd(),"deploygpt-e9475e7c2c7c.json"]
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = '/'.join(rutas)
def transcribe(file_name):
"""Transcribe audio bytes to text using Google Cloud Speech to Text."""
if file_name is None:
return ''
# Crea un cliente de Speech to Text
client = speech.SpeechClient()
# Configura la configuración de la solicitud
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
enable_automatic_punctuation=True,
audio_channel_count=1,
language_code="es-AR",
)
# Crea una solicitud de reconocimiento de audio
with io.open(file_name, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
# Realiza la transcripción
response = client.recognize(request={"config": config, "audio": audio})
transcript = []
# Reads the response
for result in response.results:
print("Transcript: {}".format(result.alternatives[0].transcript))
transcript.append(result.alternatives[0].transcript)
return ' '.join(transcript)
demo = gr.Interface(
transcribe,
gr.Audio(sources=["microphone"],
type="filepath", # Crea un archivo temporal en formato wav
streaming=False),
"text"
)
demo.launch()
|