Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,96 +1,51 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
import numpy as np
|
4 |
-
#from google.cloud import speech_v1
|
5 |
from google.cloud import speech
|
6 |
-
from google.protobuf import timestamp_pb2
|
7 |
|
8 |
-
import io
|
9 |
-
import os
|
10 |
-
"""Lista los archivos en la carpeta de ejecución."""
|
11 |
-
archivos = os.listdir()
|
12 |
-
print("\n".join(archivos))
|
13 |
-
print(os.getcwd())
|
14 |
|
15 |
rutas = [os.getcwd(),"deploygpt-e9475e7c2c7c.json"]
|
16 |
-
print('/'.join(rutas))
|
17 |
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = '/'.join(rutas)
|
18 |
|
19 |
-
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
20 |
|
21 |
-
def transcribe(
|
22 |
-
print(type(audio_bytes))
|
23 |
"""Transcribe audio bytes to text using Google Cloud Speech to Text."""
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
y /= np.max(np.abs(y))
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
client = speech.SpeechClient()
|
37 |
-
|
38 |
-
# Configura la configuración de la solicitud
|
39 |
-
#config = speech_v1.RecognitionConfig()
|
40 |
-
#config.language_code = "es-AR"
|
41 |
-
#config.encoding = speech_v1.RecognitionConfig.Encoding.LINEAR16
|
42 |
-
#config.sample_rate_hertz = 16000
|
43 |
-
config = speech.RecognitionConfig(
|
44 |
-
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
|
45 |
-
enable_automatic_punctuation=True,
|
46 |
-
audio_channel_count=1,
|
47 |
-
language_code="es-AR",
|
48 |
-
)
|
49 |
-
|
50 |
-
# Crea una solicitud de reconocimiento de audio
|
51 |
-
#audio = speech_v1.RecognitionAudio(content=audio_bytes)
|
52 |
-
#request = speech_v1.RecognizeSpeechRequest(config=config, audio=audio)
|
53 |
-
print(f"{type(audio_bytes)} {audio_bytes}")
|
54 |
-
file_name = audio_bytes
|
55 |
-
#sr, y = audio_bytes
|
56 |
-
#print(f"{type(sr)} {sr}")
|
57 |
-
#print(type(y))
|
58 |
-
#y = y.astype(np.float32)
|
59 |
-
#y /= np.max(np.abs(y))
|
60 |
-
|
61 |
-
#import scipy.io.wavfile as wav
|
62 |
-
#RATE = sr
|
63 |
-
#numpydata = y
|
64 |
-
#file_name = 'out.wav'
|
65 |
-
#wav.write(file_name, RATE, numpydata)
|
66 |
-
#the path of your audio file
|
67 |
-
with io.open(file_name, "rb") as audio_file:
|
68 |
-
content = audio_file.read()
|
69 |
-
audio = speech.RecognitionAudio(content=content)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
return
|
87 |
|
88 |
|
89 |
demo = gr.Interface(
|
90 |
-
|
91 |
-
gr.Audio(sources=["microphone"],
|
92 |
-
|
93 |
-
|
|
|
94 |
)
|
95 |
|
96 |
demo.launch()
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
from google.cloud import speech
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
rutas = [os.getcwd(),"deploygpt-e9475e7c2c7c.json"]
|
|
|
8 |
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = '/'.join(rutas)
|
9 |
|
|
|
10 |
|
11 |
+
def transcribe(file_name):
|
|
|
12 |
"""Transcribe audio bytes to text using Google Cloud Speech to Text."""
|
13 |
+
if not file_name:
|
14 |
+
# Crea un cliente de Speech to Text
|
15 |
+
client = speech.SpeechClient()
|
|
|
16 |
|
17 |
+
# Configura la configuración de la solicitud
|
18 |
+
config = speech.RecognitionConfig(
|
19 |
+
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
|
20 |
+
enable_automatic_punctuation=True,
|
21 |
+
audio_channel_count=1,
|
22 |
+
language_code="es-AR",
|
23 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Crea una solicitud de reconocimiento de audio
|
26 |
+
with io.open(file_name, "rb") as audio_file:
|
27 |
+
content = audio_file.read()
|
28 |
+
audio = speech.RecognitionAudio(content=content)
|
29 |
+
|
30 |
+
# Realiza la transcripción
|
31 |
+
response = client.recognize(request={"config": config, "audio": audio})
|
32 |
+
|
33 |
+
transcript = []
|
34 |
+
# Reads the response
|
35 |
+
for result in response.results:
|
36 |
+
print("Transcript: {}".format(result.alternatives[0].transcript))
|
37 |
+
transcript.append(result.alternatives[0].transcript)
|
38 |
+
|
39 |
+
return ' '.join(transcript)
|
40 |
+
return ''
|
41 |
|
42 |
|
43 |
demo = gr.Interface(
|
44 |
+
transcribe,
|
45 |
+
gr.Audio(sources=["microphone"],
|
46 |
+
type="filepath", # Crea un archivo temporal en formato wav
|
47 |
+
streaming=False),
|
48 |
+
"text"
|
49 |
)
|
50 |
|
51 |
demo.launch()
|