Spaces:
Running
Running
File size: 1,783 Bytes
d9d94b1 cb9846d 241d532 cb9846d 30214b5 d72f733 c94a411 cb9846d d9d94b1 3a921e4 4de176d a7dbc3a 3a921e4 4de176d 1180c79 4de176d d9d94b1 4de176d ea9a51d 4de176d a7dbc3a 2a119dd 4de176d ea9a51d cb9846d d9d94b1 ea9a51d 9ebdbe5 f734e7b cb9846d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import io
import os
import gradio as gr
from google.cloud import speech
rutas = [os.getcwd(),"deploygpt-e9475e7c2c7c.json"]
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = '/'.join(rutas)
def transcribe(file_name):
"""Transcribe audio bytes to text using Google Cloud Speech to Text."""
if file_name is None:
return '', ''
# Crea un cliente de Speech to Text
client = speech.SpeechClient()
# Configura la configuración de la solicitud
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
enable_automatic_punctuation=True,
audio_channel_count=1,
language_code="es-AR",
)
# Crea una solicitud de reconocimiento de audio
with io.open(file_name, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
# Realiza la transcripción
response = client.recognize(request={"config": config, "audio": audio})
transcript = []
confidence = []
# Reads the response
for result in response.results:
print("Confidence: {}".format(result.alternatives[0].confidence))
confidence.append(str(result.alternatives[0].confidence))
print("Transcript: {}".format(result.alternatives[0].transcript))
transcript.append(result.alternatives[0].transcript)
return ' '.join(transcript), '\n'.join(confidence)
demo = gr.Interface(
transcribe,
gr.Audio(sources=["microphone"],
type="filepath", # Crea un archivo temporal en formato wav
streaming=False),
["text", "text"],
title='Demo uso de Speech-to-Text usando la Api de Google',
description='<p>Grabar audio para convertir voz a texto.</p>'
)
demo.launch()
|