Spaces:
Runtime error
Runtime error
File size: 4,949 Bytes
1c24143 3f0a74a 1c24143 eabd109 1c24143 f8f28dc 1c24143 7be8c14 052bd8b 1c24143 052bd8b 1c24143 422ac12 1c24143 052bd8b 1c24143 052bd8b 1c24143 3f0a74a 052bd8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
from threading import Thread
from typing import Iterator, List, Dict, Any
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, Conversation, pipeline
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 512
DESCRIPTION = """\
# Buzz-3B-Small
This Space demonstrates Buzz-3b-small-v0.6.3.
"""
LICENSE = """
<p/>
---
Chat with Buzz-small!
only 3b, this demo runs on the fp8 weights of the model in pytorch format, its brains are probably significantly damaged, converting to cpp soon, dont worry!
"""
device = 0 if torch.cuda.is_available() else -1
model_id = "H-D-T/Buzz-3b-small-v0.6.3"
chatbot = pipeline(model=model_id, device=device, task="conversational",model_kwargs={"load_in_8bit": True})
tokenizer = AutoTokenizer.from_pretrained(model_id)
bos_token = "<|begin_of_text|>"
eos_token = "<|eot_id|>"
start_header_id = "<|start_header_id|>"
end_header_id = "<|end_header_id|>"
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.eos_token_id
def format_conversation(chat_history: List[Dict[str, str]], add_generation_prompt=False) -> str:
"""
Formats the chat history according to the model's chat template.
"""
formatted_history = []
for i, message in enumerate(chat_history):
role, content = message["role"], message["content"]
formatted_message = f"{start_header_id}{role}{end_header_id}\n\n{content.strip()}{eos_token}"
if i == 0:
formatted_message = bos_token + formatted_message
formatted_history.append(formatted_message)
if add_generation_prompt:
formatted_history.append(f"{start_header_id}assistant{end_header_id}\n\n")
else:
formatted_history.append(eos_token)
return "".join(formatted_history)
@spaces.GPU
def generate(
message: str,
chat_history: List[Dict[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.4,
) -> Iterator[str]:
chat_history.append({"role": "user", "content": message})
chat_context = format_conversation(chat_history, add_generation_prompt=True)
input_ids = tokenizer([chat_context], return_tensors="pt").input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=5,
early_stopping=False,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.4,
),
],
stop_btn=None,
examples=[
["A recipe for a chocolate cake:"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["Question: What is the capital of France?\nAnswer:"],
["Question: I am very tired, what should I do?\nAnswer:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|