File size: 4,949 Bytes
1c24143
 
 
 
3f0a74a
1c24143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eabd109
1c24143
 
f8f28dc
1c24143
 
7be8c14
052bd8b
1c24143
052bd8b
 
 
 
 
1c24143
 
 
 
422ac12
1c24143
 
 
 
 
 
 
 
052bd8b
1c24143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
052bd8b
 
1c24143
 
 
 
3f0a74a
052bd8b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
from threading import Thread
from typing import Iterator, List, Dict, Any

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, Conversation, pipeline

MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 512

DESCRIPTION = """\
# Buzz-3B-Small
This Space demonstrates Buzz-3b-small-v0.6.3.
"""

LICENSE = """
<p/>
---
Chat with Buzz-small!
only 3b,  this demo runs on the fp8 weights of the model in pytorch format, its brains are probably significantly damaged, converting to cpp soon, dont worry!
"""

device = 0 if torch.cuda.is_available() else -1

model_id = "H-D-T/Buzz-3b-small-v0.6.3"
chatbot = pipeline(model=model_id, device=device, task="conversational",model_kwargs={"load_in_8bit": True})

tokenizer = AutoTokenizer.from_pretrained(model_id)
bos_token = "<|begin_of_text|>"
eos_token = "<|eot_id|>"
start_header_id = "<|start_header_id|>"
end_header_id = "<|end_header_id|>"

if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.pad_token_id = tokenizer.eos_token_id
    model.config.pad_token_id = tokenizer.eos_token_id

def format_conversation(chat_history: List[Dict[str, str]], add_generation_prompt=False) -> str:
    """
    Formats the chat history according to the model's chat template.
    """
    formatted_history = []
    for i, message in enumerate(chat_history):
        role, content = message["role"], message["content"]
        formatted_message = f"{start_header_id}{role}{end_header_id}\n\n{content.strip()}{eos_token}"
        if i == 0:
            formatted_message = bos_token + formatted_message
        formatted_history.append(formatted_message)
    
    if add_generation_prompt:
        formatted_history.append(f"{start_header_id}assistant{end_header_id}\n\n")
    else:
        formatted_history.append(eos_token)
    
    return "".join(formatted_history)

@spaces.GPU
def generate(
    message: str,
    chat_history: List[Dict[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.4,
) -> Iterator[str]:
    
    chat_history.append({"role": "user", "content": message})
    chat_context = format_conversation(chat_history, add_generation_prompt=True)
    input_ids = tokenizer([chat_context], return_tensors="pt").input_ids
    
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        pad_token_id=tokenizer.eos_token_id,
        repetition_penalty=repetition_penalty,
        no_repeat_ngram_size=5,
        early_stopping=False,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    
    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.4,
        ),
    ],
    stop_btn=None,
    examples=[
        ["A recipe for a chocolate cake:"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["Question: What is the capital of France?\nAnswer:"],
        ["Question: I am very tired, what should I do?\nAnswer:"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()