Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,175 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
from threading import Thread
|
3 |
+
from typing import Iterator
|
4 |
+
|
5 |
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
import torch
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
+
|
10 |
+
MAX_MAX_NEW_TOKENS = 1024
|
11 |
+
DEFAULT_MAX_NEW_TOKENS = 256
|
12 |
+
MAX_INPUT_TOKEN_LENGTH = 512
|
13 |
+
|
14 |
+
DESCRIPTION = """\
|
15 |
+
# Buzz-3B-Small
|
16 |
+
This Space demonstrates Buzz-3b-small-v0.6.3.
|
17 |
+
"""
|
18 |
+
|
19 |
+
LICENSE = """
|
20 |
+
<p/>
|
21 |
+
---
|
22 |
+
This demo uses Buzz-3b-small-v0.6.3. Please check the model card for details.
|
23 |
+
"""
|
24 |
+
|
25 |
+
if not torch.cuda.is_available():
|
26 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo works better on GPU.</p>"
|
27 |
+
|
28 |
+
model_id = "H-D-T/Buzz-3b-small-v0.6.3"
|
29 |
+
|
30 |
+
if torch.cuda.is_available():
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, low_cpu_mem_usage=True)
|
32 |
+
else:
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cpu", trust_remote_code=True, low_cpu_mem_usage=True)
|
34 |
+
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
36 |
+
if tokenizer.pad_token == None:
|
37 |
+
tokenizer.pad_token = tokenizer.eos_token
|
38 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
39 |
+
model.config.pad_token_id = tokenizer.eos_token_id
|
40 |
+
|
41 |
+
# Define the special tokens
|
42 |
+
bos_token = "<|begin_of_text|>"
|
43 |
+
eos_token = "<|eot_id|>"
|
44 |
+
start_header_id = "<|start_header_id|>"
|
45 |
+
end_header_id = "<|end_header_id|>"
|
46 |
+
|
47 |
+
def format_chat_history(chat_history: list[tuple[str, str]], add_generation_prompt=False) -> str:
|
48 |
+
"""
|
49 |
+
Formats the chat history according to the model's chat template.
|
50 |
+
"""
|
51 |
+
chat_template = f"""
|
52 |
+
{{% if not add_generation_prompt is defined %}}{{% set add_generation_prompt = false %}}{{% endif %}}
|
53 |
+
{{% set loop_messages = messages %}}
|
54 |
+
{{% for message in loop_messages %}}
|
55 |
+
{{% set content = '{start_header_id}' + message['role'] + '{end_header_id}\\n\\n' + message['content'].strip() + '{eos_token}' %}}
|
56 |
+
{{% if loop.index0 == 0 %}}{{% set content = bos_token + content %}}{{% endif %}}
|
57 |
+
{{ content }}
|
58 |
+
{{% endfor %}}
|
59 |
+
{{% if add_generation_prompt %}}{{ '{start_header_id}assistant{end_header_id}\\n\\n' }}{{% else %}}{{ eos_token }}{{% endif %}}
|
60 |
+
"""
|
61 |
+
chat_context = ""
|
62 |
+
for i, (user, assistant) in enumerate(chat_history):
|
63 |
+
user_msg = start_header_id + "user" + end_header_id + "\n\n" + user.strip() + eos_token
|
64 |
+
assistant_msg = start_header_id + "assistant" + end_header_id + "\n\n" + assistant.strip() + eos_token
|
65 |
+
if i == 0:
|
66 |
+
user_msg = bos_token + user_msg
|
67 |
+
chat_context += user_msg + assistant_msg
|
68 |
+
|
69 |
+
if add_generation_prompt:
|
70 |
+
chat_context += start_header_id + "assistant" + end_header_id + "\n\n"
|
71 |
+
else:
|
72 |
+
chat_context += eos_token
|
73 |
+
|
74 |
+
return chat_context
|
75 |
+
|
76 |
+
@spaces.GPU
|
77 |
+
def generate(
|
78 |
+
message: str,
|
79 |
+
chat_history: list[tuple[str, str]],
|
80 |
+
max_new_tokens: int = 1024,
|
81 |
+
temperature: float = 0.6,
|
82 |
+
top_p: float = 0.9,
|
83 |
+
top_k: int = 50,
|
84 |
+
repetition_penalty: float = 1.4,
|
85 |
+
) -> Iterator[str]:
|
86 |
+
|
87 |
+
chat_history.append(("user", message))
|
88 |
+
chat_context = format_chat_history(chat_history, add_generation_prompt=True)
|
89 |
+
input_ids = tokenizer([chat_context], return_tensors="pt").input_ids
|
90 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
91 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
92 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
93 |
+
input_ids = input_ids.to(model.device)
|
94 |
+
|
95 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
96 |
+
generate_kwargs = dict(
|
97 |
+
{"input_ids": input_ids},
|
98 |
+
streamer=streamer,
|
99 |
+
max_new_tokens=max_new_tokens,
|
100 |
+
do_sample=True,
|
101 |
+
top_p=top_p,
|
102 |
+
top_k=top_k,
|
103 |
+
temperature=temperature,
|
104 |
+
num_beams=1,
|
105 |
+
pad_token_id = tokenizer.eos_token_id,
|
106 |
+
repetition_penalty=repetition_penalty,
|
107 |
+
no_repeat_ngram_size=5,
|
108 |
+
early_stopping=False,
|
109 |
+
)
|
110 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
111 |
+
t.start()
|
112 |
+
|
113 |
+
outputs = []
|
114 |
+
for text in streamer:
|
115 |
+
outputs.append(text)
|
116 |
+
yield "".join(outputs)
|
117 |
+
|
118 |
+
|
119 |
+
chat_interface = gr.ChatInterface(
|
120 |
+
fn=generate,
|
121 |
+
additional_inputs=[
|
122 |
+
gr.Slider(
|
123 |
+
label="Max new tokens",
|
124 |
+
minimum=1,
|
125 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
126 |
+
step=1,
|
127 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
128 |
+
),
|
129 |
+
gr.Slider(
|
130 |
+
label="Temperature",
|
131 |
+
minimum=0.1,
|
132 |
+
maximum=4.0,
|
133 |
+
step=0.1,
|
134 |
+
value=0.6,
|
135 |
+
),
|
136 |
+
gr.Slider(
|
137 |
+
label="Top-p (nucleus sampling)",
|
138 |
+
minimum=0.05,
|
139 |
+
maximum=1.0,
|
140 |
+
step=0.05,
|
141 |
+
value=0.9,
|
142 |
+
),
|
143 |
+
gr.Slider(
|
144 |
+
label="Top-k",
|
145 |
+
minimum=1,
|
146 |
+
maximum=1000,
|
147 |
+
step=1,
|
148 |
+
value=50,
|
149 |
+
),
|
150 |
+
gr.Slider(
|
151 |
+
label="Repetition penalty",
|
152 |
+
minimum=1.0,
|
153 |
+
maximum=2.0,
|
154 |
+
step=0.05,
|
155 |
+
value=1.4,
|
156 |
+
),
|
157 |
+
],
|
158 |
+
stop_btn=None,
|
159 |
+
examples=[
|
160 |
+
["A recipe for a chocolate cake:"],
|
161 |
+
["Can you explain briefly to me what is the Python programming language?"],
|
162 |
+
["Explain the plot of Cinderella in a sentence."],
|
163 |
+
["Question: What is the capital of France?\nAnswer:"],
|
164 |
+
["Question: I am very tired, what should I do?\nAnswer:"],
|
165 |
+
],
|
166 |
+
)
|
167 |
+
|
168 |
+
with gr.Blocks(css="style.css") as demo:
|
169 |
+
gr.Markdown(DESCRIPTION)
|
170 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
171 |
+
chat_interface.render()
|
172 |
+
gr.Markdown(LICENSE)
|
173 |
|
174 |
+
if __name__ == "__main__":
|
175 |
+
demo.queue(max_size=20).launch()
|