File size: 5,682 Bytes
052bd8b
 
 
 
3f0a74a
052bd8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0a74a
052bd8b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 512

DESCRIPTION = """\
# Buzz-3B-Small
This Space demonstrates Buzz-3b-small-v0.6.3.
"""

LICENSE = """
<p/>
---
This demo uses Buzz-3b-small-v0.6.3. Please check the model card for details.
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo works better on GPU.</p>"

model_id = "H-D-T/Buzz-3b-small-v0.6.3"

if torch.cuda.is_available():
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, low_cpu_mem_usage=True)
else:
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cpu", trust_remote_code=True, low_cpu_mem_usage=True)
    
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token == None:
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.pad_token_id = tokenizer.eos_token_id
    model.config.pad_token_id = tokenizer.eos_token_id

# Define the special tokens
bos_token = "<|begin_of_text|>"
eos_token = "<|eot_id|>"
start_header_id = "<|start_header_id|>"
end_header_id = "<|end_header_id|>"

def format_chat_history(chat_history: list[tuple[str, str]], add_generation_prompt=False) -> str:
    """
    Formats the chat history according to the model's chat template.
    """
    chat_template = f"""
    {{% if not add_generation_prompt is defined %}}{{% set add_generation_prompt = false %}}{{% endif %}}
    {{% set loop_messages = messages %}}
    {{% for message in loop_messages %}}
        {{% set content = '{start_header_id}' + message['role'] + '{end_header_id}\\n\\n' + message['content'].strip() + '{eos_token}' %}}
        {{% if loop.index0 == 0 %}}{{% set content = bos_token + content %}}{{% endif %}}
        {{ content }}
    {{% endfor %}}
    {{% if add_generation_prompt %}}{{ '{start_header_id}assistant{end_header_id}\\n\\n' }}{{% else %}}{{ eos_token }}{{% endif %}}
    """
    chat_context = ""
    for i, (user, assistant) in enumerate(chat_history):
        user_msg = start_header_id + "user" + end_header_id + "\n\n" + user.strip() + eos_token
        assistant_msg = start_header_id + "assistant" + end_header_id + "\n\n" + assistant.strip() + eos_token
        if i == 0:
            user_msg = bos_token + user_msg
        chat_context += user_msg + assistant_msg

    if add_generation_prompt:
        chat_context += start_header_id + "assistant" + end_header_id + "\n\n"
    else:
        chat_context += eos_token

    return chat_context

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.4,
) -> Iterator[str]:
    
    chat_history.append(("user", message))
    chat_context = format_chat_history(chat_history, add_generation_prompt=True)
    input_ids = tokenizer([chat_context], return_tensors="pt").input_ids
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        pad_token_id = tokenizer.eos_token_id,
        repetition_penalty=repetition_penalty,
        no_repeat_ngram_size=5,
        early_stopping=False,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.4,
        ),
    ],
    stop_btn=None,
    examples=[
        ["A recipe for a chocolate cake:"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["Question: What is the capital of France?\nAnswer:"],
        ["Question: I am very tired, what should I do?\nAnswer:"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()