Spaces:
Runtime error
Runtime error
File size: 5,682 Bytes
052bd8b 3f0a74a 052bd8b 3f0a74a 052bd8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 512
DESCRIPTION = """\
# Buzz-3B-Small
This Space demonstrates Buzz-3b-small-v0.6.3.
"""
LICENSE = """
<p/>
---
This demo uses Buzz-3b-small-v0.6.3. Please check the model card for details.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo works better on GPU.</p>"
model_id = "H-D-T/Buzz-3b-small-v0.6.3"
if torch.cuda.is_available():
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, low_cpu_mem_usage=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cpu", trust_remote_code=True, low_cpu_mem_usage=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token == None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.eos_token_id
# Define the special tokens
bos_token = "<|begin_of_text|>"
eos_token = "<|eot_id|>"
start_header_id = "<|start_header_id|>"
end_header_id = "<|end_header_id|>"
def format_chat_history(chat_history: list[tuple[str, str]], add_generation_prompt=False) -> str:
"""
Formats the chat history according to the model's chat template.
"""
chat_template = f"""
{{% if not add_generation_prompt is defined %}}{{% set add_generation_prompt = false %}}{{% endif %}}
{{% set loop_messages = messages %}}
{{% for message in loop_messages %}}
{{% set content = '{start_header_id}' + message['role'] + '{end_header_id}\\n\\n' + message['content'].strip() + '{eos_token}' %}}
{{% if loop.index0 == 0 %}}{{% set content = bos_token + content %}}{{% endif %}}
{{ content }}
{{% endfor %}}
{{% if add_generation_prompt %}}{{ '{start_header_id}assistant{end_header_id}\\n\\n' }}{{% else %}}{{ eos_token }}{{% endif %}}
"""
chat_context = ""
for i, (user, assistant) in enumerate(chat_history):
user_msg = start_header_id + "user" + end_header_id + "\n\n" + user.strip() + eos_token
assistant_msg = start_header_id + "assistant" + end_header_id + "\n\n" + assistant.strip() + eos_token
if i == 0:
user_msg = bos_token + user_msg
chat_context += user_msg + assistant_msg
if add_generation_prompt:
chat_context += start_header_id + "assistant" + end_header_id + "\n\n"
else:
chat_context += eos_token
return chat_context
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.4,
) -> Iterator[str]:
chat_history.append(("user", message))
chat_context = format_chat_history(chat_history, add_generation_prompt=True)
input_ids = tokenizer([chat_context], return_tensors="pt").input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
pad_token_id = tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=5,
early_stopping=False,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.4,
),
],
stop_btn=None,
examples=[
["A recipe for a chocolate cake:"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["Question: What is the capital of France?\nAnswer:"],
["Question: I am very tired, what should I do?\nAnswer:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|