test / app.py
Ali2206's picture
Update app.py
c3cd8cd verified
raw
history blame
8.84 kB
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from tooluniverse import ToolUniverse
import warnings
# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Configuration with hardcoded embedding file
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"tool_files": {
"new_tool": "./data/new_tool.json"
}
}
# Logging setup
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def prepare_tool_files():
os.makedirs("./data", exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list using ToolUniverse...")
tu = ToolUniverse()
tools = tu.get_all_tools()
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
def safe_load_embeddings(filepath):
"""Safely load embeddings with proper weights_only handling"""
try:
# First try with weights_only=True (secure mode)
return torch.load(filepath, weights_only=True)
except Exception as e:
logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
# If that fails, try with weights_only=False (less secure)
return torch.load(filepath, weights_only=False)
def patch_embedding_loading():
"""Monkey-patch the embedding loading functionality"""
try:
from txagent.toolrag import ToolRAGModel
original_load = ToolRAGModel.load_tool_desc_embedding
def patched_load(self, tooluniverse):
try:
if not os.path.exists(CONFIG["embedding_filename"]):
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
return False
# Load embeddings safely
self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])
# Handle tool count mismatch
tools = tooluniverse.tools # Changed from get_all_tools()
current_count = len(tools)
embedding_count = len(self.tool_desc_embedding)
if current_count != embedding_count:
logger.warning(f"Tool count mismatch (tools: {current_count}, embeddings: {embedding_count})")
if current_count < embedding_count:
self.tool_desc_embedding = self.tool_desc_embedding[:current_count]
logger.info(f"Truncated embeddings to match {current_count} tools")
else:
last_embedding = self.tool_desc_embedding[-1]
padding = [last_embedding] * (current_count - embedding_count)
self.tool_desc_embedding = torch.cat(
[self.tool_desc_embedding] + padding
)
logger.info(f"Padded embeddings to match {current_count} tools")
return True
except Exception as e:
logger.error(f"Failed to load embeddings: {str(e)}")
return False
# Apply the patch
ToolRAGModel.load_tool_desc_embedding = patched_load
logger.info("Successfully patched embedding loading")
except Exception as e:
logger.error(f"Failed to patch embedding loading: {str(e)}")
raise
class TxAgentApp:
def __init__(self):
self.agent = None
self.is_initialized = False
def initialize(self):
if self.is_initialized:
return "βœ… Already initialized"
try:
# Apply our patch before initialization
patch_embedding_loading()
logger.info("Initializing TxAgent...")
self.agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
logger.info("Loading models...")
self.agent.init_model()
self.is_initialized = True
return "βœ… TxAgent initialized successfully"
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
return f"❌ Initialization failed: {str(e)}"
def chat(self, message, history):
if not self.is_initialized:
return {"role": "assistant", "content": "⚠️ Please initialize the model first"}
try:
response = ""
# Modified to use the correct parameter name (max_length instead of max_tokens)
for chunk in self.agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_length=8192, # Changed from max_tokens
multi_agent=False,
conversation=[],
max_round=30
):
response += chunk
# Format response in the expected messages format
return [
{"role": "user", "content": message},
{"role": "assistant", "content": response}
]
except Exception as e:
logger.error(f"Chat error: {str(e)}")
return {"role": "assistant", "content": f"Error: {str(e)}"}
def create_interface():
app = TxAgentApp()
with gr.Blocks(
title="TxAgent",
css="""
.gradio-container {max-width: 900px !important}
"""
) as demo:
gr.Markdown("""
# 🧠 TxAgent: Therapeutic Reasoning AI
### (Using pre-loaded embeddings)
""")
with gr.Row():
init_btn = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Status", interactive=False)
chatbot = gr.Chatbot(
height=500,
label="Conversation",
bubble_full_width=False
)
msg = gr.Textbox(label="Your clinical question")
clear_btn = gr.Button("Clear Chat")
gr.Examples(
examples=[
"How to adjust Journavx for renal impairment?",
"Xolremdi and Prozac interaction in WHIM syndrome?",
"Alternative to Warfarin for patient with amiodarone?"
],
inputs=msg
)
def wrapper_initialize():
status = app.initialize()
return status, gr.update(interactive=False)
def wrapper_chat(message, chat_history):
response = app.chat(message, chat_history)
if isinstance(response, dict): # Error case
return chat_history + [response]
return response # Normal case
init_btn.click(
fn=wrapper_initialize,
outputs=[init_status, init_btn]
)
msg.submit(
fn=wrapper_chat,
inputs=[msg, chatbot],
outputs=chatbot
)
clear_btn.click(
fn=lambda: ([], ""),
outputs=[chatbot, msg]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application...")
# Verify embedding file exists
if not os.path.exists(CONFIG["embedding_filename"]):
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
logger.info("Please ensure the file is in the root directory")
else:
logger.info(f"Found embedding file: {CONFIG['embedding_filename']}")
# Prepare tool files
prepare_tool_files()
# Launch interface
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise