File size: 8,836 Bytes
4b0f1a8 167b103 b8c0ae3 59ced24 167b103 410d25f 12efdad f2d6e83 59ced24 a87f861 f2d6e83 59ced24 167b103 a87f861 12efdad 70839bb 58353ee 849209d 167b103 58353ee 167b103 410d25f 1ee16da 410d25f 1ee16da 410d25f 1ee16da 410d25f 1ee16da 410d25f c3cd8cd 410d25f 1ee16da 410d25f 1ee16da 410d25f 1ee16da 12efdad 59ced24 4b0f1a8 12efdad 59ced24 4b0f1a8 849209d 4b0f1a8 f2d6e83 1ee16da 63950ea f2d6e83 63950ea a87f861 63950ea dffc0b0 63950ea dffc0b0 4b0f1a8 35da672 167b103 4b0f1a8 59ced24 4b0f1a8 c3cd8cd 849209d 4b0f1a8 e014e82 c3cd8cd 4b0f1a8 167b103 92abf33 c3cd8cd 4b0f1a8 e014e82 c3cd8cd 849209d 4b0f1a8 35da672 c3cd8cd 4b0f1a8 59ced24 849209d 35da672 63950ea f2d6e83 35da672 849209d 4b0f1a8 59ced24 849209d 1ee16da c3cd8cd 1ee16da 63950ea 849209d 63950ea 849209d c3cd8cd 35da672 c3cd8cd 35da672 849209d 35da672 c3cd8cd 35da672 849209d 8e533b3 70839bb 35da672 63950ea 849209d dffc0b0 35da672 849209d 35da672 849209d 35da672 dffc0b0 35da672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from tooluniverse import ToolUniverse
import warnings
# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Configuration with hardcoded embedding file
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"tool_files": {
"new_tool": "./data/new_tool.json"
}
}
# Logging setup
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def prepare_tool_files():
os.makedirs("./data", exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list using ToolUniverse...")
tu = ToolUniverse()
tools = tu.get_all_tools()
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
def safe_load_embeddings(filepath):
"""Safely load embeddings with proper weights_only handling"""
try:
# First try with weights_only=True (secure mode)
return torch.load(filepath, weights_only=True)
except Exception as e:
logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
# If that fails, try with weights_only=False (less secure)
return torch.load(filepath, weights_only=False)
def patch_embedding_loading():
"""Monkey-patch the embedding loading functionality"""
try:
from txagent.toolrag import ToolRAGModel
original_load = ToolRAGModel.load_tool_desc_embedding
def patched_load(self, tooluniverse):
try:
if not os.path.exists(CONFIG["embedding_filename"]):
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
return False
# Load embeddings safely
self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])
# Handle tool count mismatch
tools = tooluniverse.tools # Changed from get_all_tools()
current_count = len(tools)
embedding_count = len(self.tool_desc_embedding)
if current_count != embedding_count:
logger.warning(f"Tool count mismatch (tools: {current_count}, embeddings: {embedding_count})")
if current_count < embedding_count:
self.tool_desc_embedding = self.tool_desc_embedding[:current_count]
logger.info(f"Truncated embeddings to match {current_count} tools")
else:
last_embedding = self.tool_desc_embedding[-1]
padding = [last_embedding] * (current_count - embedding_count)
self.tool_desc_embedding = torch.cat(
[self.tool_desc_embedding] + padding
)
logger.info(f"Padded embeddings to match {current_count} tools")
return True
except Exception as e:
logger.error(f"Failed to load embeddings: {str(e)}")
return False
# Apply the patch
ToolRAGModel.load_tool_desc_embedding = patched_load
logger.info("Successfully patched embedding loading")
except Exception as e:
logger.error(f"Failed to patch embedding loading: {str(e)}")
raise
class TxAgentApp:
def __init__(self):
self.agent = None
self.is_initialized = False
def initialize(self):
if self.is_initialized:
return "✅ Already initialized"
try:
# Apply our patch before initialization
patch_embedding_loading()
logger.info("Initializing TxAgent...")
self.agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
logger.info("Loading models...")
self.agent.init_model()
self.is_initialized = True
return "✅ TxAgent initialized successfully"
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
return f"❌ Initialization failed: {str(e)}"
def chat(self, message, history):
if not self.is_initialized:
return {"role": "assistant", "content": "⚠️ Please initialize the model first"}
try:
response = ""
# Modified to use the correct parameter name (max_length instead of max_tokens)
for chunk in self.agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_length=8192, # Changed from max_tokens
multi_agent=False,
conversation=[],
max_round=30
):
response += chunk
# Format response in the expected messages format
return [
{"role": "user", "content": message},
{"role": "assistant", "content": response}
]
except Exception as e:
logger.error(f"Chat error: {str(e)}")
return {"role": "assistant", "content": f"Error: {str(e)}"}
def create_interface():
app = TxAgentApp()
with gr.Blocks(
title="TxAgent",
css="""
.gradio-container {max-width: 900px !important}
"""
) as demo:
gr.Markdown("""
# 🧠 TxAgent: Therapeutic Reasoning AI
### (Using pre-loaded embeddings)
""")
with gr.Row():
init_btn = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Status", interactive=False)
chatbot = gr.Chatbot(
height=500,
label="Conversation",
bubble_full_width=False
)
msg = gr.Textbox(label="Your clinical question")
clear_btn = gr.Button("Clear Chat")
gr.Examples(
examples=[
"How to adjust Journavx for renal impairment?",
"Xolremdi and Prozac interaction in WHIM syndrome?",
"Alternative to Warfarin for patient with amiodarone?"
],
inputs=msg
)
def wrapper_initialize():
status = app.initialize()
return status, gr.update(interactive=False)
def wrapper_chat(message, chat_history):
response = app.chat(message, chat_history)
if isinstance(response, dict): # Error case
return chat_history + [response]
return response # Normal case
init_btn.click(
fn=wrapper_initialize,
outputs=[init_status, init_btn]
)
msg.submit(
fn=wrapper_chat,
inputs=[msg, chatbot],
outputs=chatbot
)
clear_btn.click(
fn=lambda: ([], ""),
outputs=[chatbot, msg]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application...")
# Verify embedding file exists
if not os.path.exists(CONFIG["embedding_filename"]):
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
logger.info("Please ensure the file is in the root directory")
else:
logger.info(f"Found embedding file: {CONFIG['embedding_filename']}")
# Prepare tool files
prepare_tool_files()
# Launch interface
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise |