test / app.py
Ali2206's picture
Update app.py
709aba9 verified
raw
history blame
7.64 kB
import random
import datetime
import sys
import os
import torch
import logging
import json
from importlib.resources import files
from txagent import TxAgent
from tooluniverse import ToolUniverse
import gradio as gr
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"tool_files": {
"opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
"fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
"special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
"monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')),
"new_tool": os.path.join(current_dir, 'data', 'new_tool.json')
}
}
chat_css = """
.gr-button { font-size: 20px !important; }
.gr-button svg { width: 32px !important; height: 32px !important; }
"""
def safe_load_embeddings(filepath: str) -> any:
try:
return torch.load(filepath, weights_only=True)
except Exception as e:
logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
try:
return torch.load(filepath, weights_only=False)
except Exception as e:
logger.error(f"Failed to load embeddings: {str(e)}")
return None
def patch_embedding_loading():
try:
from txagent.toolrag import ToolRAGModel
def patched_load(self, tooluniverse):
try:
if not os.path.exists(CONFIG["embedding_filename"]):
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
return False
self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])
if hasattr(tooluniverse, 'get_all_tools'):
tools = tooluniverse.get_all_tools()
elif hasattr(tooluniverse, 'tools'):
tools = tooluniverse.tools
else:
logger.error("No method found to access tools from ToolUniverse")
return False
current_count = len(tools)
embedding_count = len(self.tool_desc_embedding)
if current_count != embedding_count:
logger.warning(f"Tool count mismatch (tools: {current_count}, embeddings: {embedding_count})")
if current_count < embedding_count:
self.tool_desc_embedding = self.tool_desc_embedding[:current_count]
logger.info(f"Truncated embeddings to match {current_count} tools")
else:
last_embedding = self.tool_desc_embedding[-1]
padding = [last_embedding] * (current_count - embedding_count)
self.tool_desc_embedding = torch.cat([self.tool_desc_embedding] + padding)
logger.info(f"Padded embeddings to match {current_count} tools")
return True
except Exception as e:
logger.error(f"Failed to load embeddings: {str(e)}")
return False
ToolRAGModel.load_tool_desc_embedding = patched_load
logger.info("Successfully patched embedding loading")
except Exception as e:
logger.error(f"Failed to patch embedding loading: {str(e)}")
raise
def prepare_tool_files():
os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list using ToolUniverse...")
try:
tu = ToolUniverse()
if hasattr(tu, 'get_all_tools'):
tools = tu.get_all_tools()
elif hasattr(tu, 'tools'):
tools = tu.tools
else:
tools = []
logger.error("Could not access tools from ToolUniverse")
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
except Exception as e:
logger.error(f"Failed to prepare tool files: {str(e)}")
def create_agent():
patch_embedding_loading()
prepare_tool_files()
try:
agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=['DirectResponse', 'RequireClarification']
)
agent.init_model()
return agent
except Exception as e:
logger.error(f"Failed to create agent: {str(e)}")
raise
def respond(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
updated_history = history + [{"role": "user", "content": message}]
print("\n==== DEBUG ====")
print("User Message:", message)
print("Full History:", updated_history)
print("================\n")
try:
# Ensure correct format for run_gradio_chat
formatted_history = [(m["role"], m["content"]) for m in updated_history]
response_generator = agent.run_gradio_chat(
formatted_history,
temperature,
max_new_tokens,
max_tokens,
multi_agent,
conversation,
max_round
)
except Exception as e:
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": f"Error: {str(e)}"}]
collected = ""
for chunk in response_generator:
if isinstance(chunk, dict):
collected += chunk.get("content", "")
else:
collected += str(chunk)
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": collected}]
def create_demo(agent):
with gr.Blocks(css=chat_css) as demo:
chatbot = gr.Chatbot(label="TxAgent", type="messages")
with gr.Row():
msg = gr.Textbox(label="Your question")
with gr.Row():
temp = gr.Slider(0, 1, value=0.3, label="Temperature")
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
max_tokens = gr.Slider(128, 81920, value=81920, label="Max Total Tokens")
max_rounds = gr.Slider(1, 30, value=30, label="Max Rounds")
multi_agent = gr.Checkbox(label="Multi-Agent Mode")
with gr.Row():
submit = gr.Button("Ask TxAgent")
submit.click(
respond,
inputs=[msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, gr.State([]), max_rounds],
outputs=[chatbot]
)
return demo
def main():
try:
global agent
agent = create_agent()
demo = create_demo(agent)
demo.launch()
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise
if __name__ == "__main__":
main()